Quantum autoencoders for efficient compression of quantum data

被引:371
作者
Romero, Jonathan [1 ]
Olson, Jonathan P. [1 ]
Aspuru-Guzik, Alan [1 ]
机构
[1] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
关键词
quantum computing; machine learning; autoencoders; data compression; quantum simulation; !text type='PYTHON']PYTHON[!/text] FRAMEWORK; DYNAMICS; QUTIP; GATE;
D O I
10.1088/2058-9565/aa8072
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Classical autoencoders are neural networks that can learn efficient low-dimensional representations of data in higher-dimensional space. The task of an autoencoder is, given an input x, to map x to a lower dimensional point y such that x can likely be recovered from y. The structure of the underlying autoencoder network can be chosen to represent the data on a smaller dimension, effectively compressing the input. Inspired by this idea, we introduce the model of a quantum autoencoder to perform similar tasks on quantum data. The quantum autoencoder is trained to compress a particular data set of quantum states, where a classical compression algorithm cannot be employed. The parameters of the quantum autoencoder are trained using classical optimization algorithms. We show an example of a simple programmable circuit that can be trained as an efficient autoencoder. We apply our model in the context of quantum simulation to compress ground states of the Hubbard model and molecular Hamiltonians.
引用
收藏
页数:12
相关论文
共 41 条
[31]   Sequential generation of entangled multiqubit states -: art. no. 110503 [J].
Schön, C ;
Solano, E ;
Verstraete, F ;
Cirac, JI ;
Wolf, MM .
PHYSICAL REVIEW LETTERS, 2005, 95 (11)
[32]   Preparing Projected Entangled Pair States on a Quantum Computer [J].
Schwarz, Martin ;
Temme, Kristan ;
Verstraete, Frank .
PHYSICAL REVIEW LETTERS, 2012, 108 (11)
[33]   The Bravyi-Kitaev transformation for quantum computation of electronic structure [J].
Seeley, Jacob T. ;
Richard, Martin J. ;
Love, Peter J. .
JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (22)
[34]   Synthesis of quantum-logic circuits [J].
Shende, Vivek V. ;
Bullock, Stephen S. ;
Markov, Igor L. .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2006, 25 (06) :1000-1010
[35]  
Sousa PBM, 2007, QUANTUM INF COMPUT, V7, P228
[36]   The Bravyi-Kitaev transformation: Properties and applications [J].
Tranter, Andrew ;
Sofia, Sarah ;
Seeley, Jake ;
Kaicher, Michael ;
McClean, Jarrod ;
Babbush, Ryan ;
Coveney, Peter V. ;
Mintert, Florian ;
Wilhelm, Frank ;
Love, Peter J. .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (19) :1431-1441
[37]   A two-qubit logic gate in silicon [J].
Veldhorst, M. ;
Yang, C. H. ;
Hwang, J. C. C. ;
Huang, W. ;
Dehollain, J. P. ;
Muhonen, J. T. ;
Simmons, S. ;
Laucht, A. ;
Hudson, F. E. ;
Itoh, K. M. ;
Morello, A. ;
Dzurak, A. S. .
NATURE, 2015, 526 (7573) :410-414
[38]   Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms [J].
Wales, DJ ;
Doye, JPK .
JOURNAL OF PHYSICAL CHEMISTRY A, 1997, 101 (28) :5111-5116
[39]  
Wan K. H., 2016, ARXIV161201045
[40]   Progress towards practical quantum variational algorithms [J].
Wecker, Dave ;
Hastings, Matthew B. ;
Troyer, Matthias .
PHYSICAL REVIEW A, 2015, 92 (04)