Modeling of self-organized systems interacting with a few individuals: From microscopic to macroscopic dynamics

被引:44
作者
Albi, G. [1 ]
Pareschi, L. [1 ]
机构
[1] Univ Ferrara, Dept Math, I-44121 Ferrara, Italy
关键词
Kinetic models; Mean field models; Flocking; Swarming; Collective behavior; PARTICLE; FLOCKING; BEHAVIOR;
D O I
10.1016/j.aml.2012.10.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In nature, self-organized systems such as flocks of birds, schools of fish and herds of sheep have to deal with the presence of external agents such as predators or leaders that modify their internal dynamics. Such situations involve a large number of individuals with their own social behavior interacting with a small number of other individuals acting as external point-source forces. Starting from a microscopic description, we derive a kinetic model using the mean-field limit and introduce a macroscopic model via a suitable hydrodynamic approximation. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:397 / 401
页数:5
相关论文
共 15 条
[1]  
Albi G., MULTISCALE IN PRESS
[2]  
Albi G., 2012, PREPRINT
[3]  
AOKI I, 1982, B JPN SOC SCI FISH, V48, P1081
[4]   Portraits of self-organization in fish schools interacting with robots [J].
Aureli, M. ;
Fiorilli, F. ;
Porfiri, M. .
PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (09) :908-920
[5]   Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study [J].
Ballerini, M. ;
Calbibbo, N. ;
Candeleir, R. ;
Cavagna, A. ;
Cisbani, E. ;
Giardina, I. ;
Lecomte, V. ;
Orlandi, A. ;
Parisi, G. ;
Procaccini, A. ;
Viale, M. ;
Zdravkovic, V. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (04) :1232-1237
[6]   A WELL-POSEDNESS THEORY IN MEASURES FOR SOME KINETIC MODELS OF COLLECTIVE MOTION [J].
Canizo, J. A. ;
Carrillo, J. A. ;
Rosado, J. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (03) :515-539
[7]   ASYMPTOTIC FLOCKING DYNAMICS FOR THE KINETIC CUCKER-SMALE MODEL [J].
Carrillo, J. A. ;
Fornasier, M. ;
Rosado, J. ;
Toscani, G. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (01) :218-236
[8]  
Carrillo JA, 2010, MODEL SIMUL SCI ENG, P297, DOI 10.1007/978-0-8176-4946-3_12
[9]   State transitions and the continuum limit for a 2D interacting, self-propelled particle system [J].
Chuang, Yao-Li ;
D'Orsogna, Maria R. ;
Marthaler, Daniel ;
Bertozzi, Andrea L. ;
Chayes, Lincoln S. .
PHYSICA D-NONLINEAR PHENOMENA, 2007, 232 (01) :33-47
[10]   An Analytical Framework to Describe the Interactions Between Individuals and a Continuum [J].
Colombo, Rinaldo M. ;
Lecureux-Mercier, Magali .
JOURNAL OF NONLINEAR SCIENCE, 2012, 22 (01) :39-61