Dynamical Models of Electric Arcs and Memristors: The Common Properties

被引:13
作者
Marszalek, Wieslaw [1 ]
Trzaska, Zdzislaw W. [2 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[2] Univ Ecol & Management, PL-00792 Warsaw, Poland
关键词
Cassie-Mayr model; electric arcs; memristors; nanoscale electronics; pinched hysteresis; CIRCUITS; CASSIE; OSCILLATIONS; PARAMETERS; SYSTEMS; DEVICES; LOOPS;
D O I
10.1109/TPS.2016.2645879
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We discuss the memristive properties (or fingerprints) of the hybrid Cassie-Mayr model of electric arcs. In particular, we prove that: 1) the voltage-current characteristic of the model has the pinched hysteresis nature; 2) the voltage and current zero crossings occur at the same instants; and 3) when the frequency f of the power supply increases, the voltage-current pinched hysteresis characteristic tends closer to a single-valued one, meaning that the voltage-current graph becomes that of a resistor (with an increased linearity for f -> infinity). The conductance g of the Cassie-Mayr model decreases when the frequency increases. The hybrid Cassie-Mayr model describes, therefore, an interesting case of a memristive phenomenon.
引用
收藏
页码:259 / 265
页数:7
相关论文
共 50 条
  • [31] Dynamical properties of the repressilator model
    Buse, Olguta
    Perez, Rodrigo
    Kuznetsov, Alexey
    PHYSICAL REVIEW E, 2010, 81 (06):
  • [32] Dynamical properties of the tent map
    Scheicher, K.
    Sirvent, V. F.
    Surer, P.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2016, 93 : 319 - 340
  • [33] EMPIRICAL RISK MINIMIZATION AND COMPLEXITY OF DYNAMICAL MODELS
    McGoff, Kevin
    Nobel, Andrew B.
    ANNALS OF STATISTICS, 2020, 48 (04) : 2031 - 2054
  • [34] Dynamical localization and eigenstate localization in trap models
    Flegel, Franziska
    Sokolov, Igor M.
    EUROPEAN PHYSICAL JOURNAL B, 2014, 87 (07)
  • [35] A Bayesian Framework for Parameter Estimation in Dynamical Models
    Coelho, Flavio Codeco
    Codeco, Claudia Torres
    Gomes, M. Gabriela M.
    PLOS ONE, 2011, 6 (05):
  • [36] Dynamical coupling of multiscale land change models
    Moreira, Evaldinolia
    Costa, Sergio
    Aguiar, Ana Paula
    Camara, Gilberto
    Carneiro, Tiago
    LANDSCAPE ECOLOGY, 2009, 24 (09) : 1183 - 1194
  • [37] Automated adaptive inference of phenomenological dynamical models
    Daniels, Bryan C.
    Nemenman, Ilya
    NATURE COMMUNICATIONS, 2015, 6
  • [38] Torus mapper: a code for dynamical models of galaxies
    Binney, James
    McMillan, Paul J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 456 (02) : 1982 - 1998
  • [39] Dynamical Behavior of Nonautonomous Stochastic Reaction-Diffusion Neural-Network Models
    Wei, Tengda
    Lin, Ping
    Zhu, Quanxin
    Wang, Linshan
    Wang, Yangfan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (05) : 1575 - 1580
  • [40] Finite-temperature dynamical properties of SU(N) fermionic Hubbard models in the spin-incoherent regime
    Tokuno, Akiyuki
    Giamarchi, Thierry
    PHYSICAL REVIEW A, 2012, 86 (05):