Using Fuzzy Logic to Design Separation Function in Flocking Algorithms

被引:48
作者
Gu, Dongbing [1 ]
Flu, Huosheng [1 ]
机构
[1] Univ Essex, Dept Comp Sci, Colchester CO4 3SQ, Essex, England
关键词
Cooperative control; flocking behavior; multi-robot systems; nonsmooth systems;
D O I
10.1109/TFUZZ.2008.917289
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Flocking algorithms essentially consist of three components: alignment, cohesion, and separation. To track a desired trajectory, the flock center should move along the desired trajectory, and thus, the fourth component, navigation, is necessary. The alignment, cohesion, and navigation components are well implemented through consensus protocols and tracking controls, while the separation component is designed through heuristic-based approaches. This paper proposes a fuzzy logic solution to the separation component. The TS rules and Gaussian membership functions are used in fuzzy logic. For fixed network flocking, a standard stability proof by using LaSalle's invariance principle is provided. For dynamic network flocking, a Filipov solution definition is given for nonsmooth dynamics. Then, a LaSalle's invariance principle for nonsmooth dynamics is used to prove the stability. A group of mobile robots with double integrator dynamics is simulated for the flocking algorithms in a 2-D environment.
引用
收藏
页码:826 / 838
页数:13
相关论文
共 24 条
  • [1] [Anonymous], 1987, Comput. Graph.
  • [2] Bacciotti A., 1999, ESAIM. Control, Optimisation and Calculus of Variations, V4, P361, DOI 10.1051/cocv:1999113
  • [3] Behavior-based formation control for multirobot teams
    Balch, T
    Arkin, RC
    [J]. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1998, 14 (06): : 926 - 939
  • [4] Clarke F. H, 1990, CLASSICS APPL MATH, V5
  • [5] A vision-based formation control framework
    Das, AK
    Fierro, R
    Kumar, V
    Ostrowski, JP
    Spletzer, J
    Taylor, CJ
    [J]. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 2002, 18 (05): : 813 - 825
  • [6] Modeling and control of formations of nonholonomic mobile robots
    Desai, JP
    Ostrowski, JP
    Kumar, V
    [J]. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 2001, 17 (06): : 905 - 908
  • [7] Information flow and cooperative control of vehicle formations
    Fax, JA
    Murray, RM
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (09) : 1465 - 1476
  • [8] FLIPPOV A, 1988, DIFFERENTIAL EQUATIO
  • [9] Autonomous formation flight
    Giulietti, Fabrizio
    Pollini, Lorenzo
    Innocenti, Mario
    [J]. IEEE Control Systems Magazine, 2000, 20 (06): : 34 - 44
  • [10] Godsil C., 2001, ALGEBRAIC GRAPH THEO