Detection of low-abundance bacterial strains in metagenomic datasets by eigengenome partitioning

被引:90
作者
Cleary, Brian [1 ,2 ]
Brito, Ilana Lauren [2 ,3 ,4 ]
Huang, Katherine [2 ]
Gevers, Dirk [2 ]
Shea, Terrance [2 ]
Young, Sarah [2 ]
Alm, Eric J. [2 ,3 ,4 ]
机构
[1] MIT, Computat & Syst Biol Program, Cambridge, MA 02139 USA
[2] Broad Inst Harvard & MIT, Cambridge, MA 02142 USA
[3] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
[4] MIT, Ctr Microbiome Informat & Therapeut, Cambridge, MA 02139 USA
关键词
DIVERSITY; ASSEMBLER; ACCURATE; COVERAGE; GENOMES; REVEAL; VELVET;
D O I
10.1038/nbt.3329
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Analyses of metagenomic datasets that are sequenced to a depth of billions or trillions of bases can uncover hundreds of microbial genomes, but naive assembly of these data is computationally intensive, requiring hundreds of gigabytes to terabytes of RAM. We present latent strain analysis (LSA), a scalable, de novo pre-assembly method that separates reads into biologically informed partitions and thereby enables assembly of individual genomes. LSA is implemented with a streaming calculation of unobserved variables that we call eigengenomes. Eigengenomes reflect covariance in the abundance of short, fixed-length sequences, or k-mers. As the abundance of each genome in a sample is reflected in the abundance of each k-mer in that genome, eigengenome analysis can be used to partition reads from different genomes. This partitioning can be done in fixed memory using tens of gigabytes of RAM, which makes assembly and downstream analyses of terabytes of data feasible on commodity hardware. Using LSA, we assemble partial and near-complete genomes of bacterial taxa present at relative abundances as low as 0.00001%. We also show that LSA is sensitive enough to separate reads from several strains of the same species.
引用
收藏
页码:1053 / +
页数:10
相关论文
共 34 条
[1]   Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes [J].
Albertsen, Mads ;
Hugenholtz, Philip ;
Skarshewski, Adam ;
Nielsen, Kare L. ;
Tyson, Gene W. ;
Nielsen, Per H. .
NATURE BIOTECHNOLOGY, 2013, 31 (06) :533-+
[2]  
Alneberg J, 2014, NAT METHODS, V11, P1144, DOI [10.1038/nmeth.3103, 10.1038/NMETH.3103]
[3]   Enterotypes of the human gut microbiome [J].
Arumugam, Manimozhiyan ;
Raes, Jeroen ;
Pelletier, Eric ;
Le Paslier, Denis ;
Yamada, Takuji ;
Mende, Daniel R. ;
Fernandes, Gabriel R. ;
Tap, Julien ;
Bruls, Thomas ;
Batto, Jean-Michel ;
Bertalan, Marcelo ;
Borruel, Natalia ;
Casellas, Francesc ;
Fernandez, Leyden ;
Gautier, Laurent ;
Hansen, Torben ;
Hattori, Masahira ;
Hayashi, Tetsuya ;
Kleerebezem, Michiel ;
Kurokawa, Ken ;
Leclerc, Marion ;
Levenez, Florence ;
Manichanh, Chaysavanh ;
Nielsen, H. Bjorn ;
Nielsen, Trine ;
Pons, Nicolas ;
Poulain, Julie ;
Qin, Junjie ;
Sicheritz-Ponten, Thomas ;
Tims, Sebastian ;
Torrents, David ;
Ugarte, Edgardo ;
Zoetendal, Erwin G. ;
Wang, Jun ;
Guarner, Francisco ;
Pedersen, Oluf ;
de Vos, Willem M. ;
Brunak, Soren ;
Dore, Joel ;
Weissenbach, Jean ;
Ehrlich, S. Dusko ;
Bork, Peer .
NATURE, 2011, 473 (7346) :174-180
[4]   Global biogeography of highly diverse protistan communities in soil [J].
Bates, Scott T. ;
Clemente, Jose C. ;
Flores, Gilberto E. ;
Walters, William Anthony ;
Parfrey, Laura Wegener ;
Knight, Rob ;
Fierer, Noah .
ISME JOURNAL, 2013, 7 (03) :652-659
[5]   Ray Meta: scalable de novo metagenome assembly and profiling [J].
Boisvert, Sebastien ;
Raymond, Frederic ;
Godzaridis, Elenie ;
Laviolette, Francois ;
Corbeil, Jacques .
GENOME BIOLOGY, 2012, 13 (12)
[6]   The metagenomics of soil [J].
Daniel, R .
NATURE REVIEWS MICROBIOLOGY, 2005, 3 (06) :470-478
[7]  
DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO
[8]  
2-9
[9]   A Genomic Distance Based on MUM Indicates Discontinuity between Most Bacterial Species and Genera [J].
Deloger, Marc ;
El Karoui, Meriem ;
Petit, Marie-Agnes .
JOURNAL OF BACTERIOLOGY, 2009, 191 (01) :91-99
[10]   Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB [J].
DeSantis, T. Z. ;
Hugenholtz, P. ;
Larsen, N. ;
Rojas, M. ;
Brodie, E. L. ;
Keller, K. ;
Huber, T. ;
Dalevi, D. ;
Hu, P. ;
Andersen, G. L. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2006, 72 (07) :5069-5072