Gate tunable graphene-silicon Ohmic/Schottky contacts

被引:41
作者
Chen, Chun-Chung [1 ]
Chang, Chia-Chi [2 ]
Li, Zhen [1 ]
Levi, A. F. J. [1 ]
Cronin, Stephen B. [1 ]
机构
[1] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
[2] Univ So Calif, Dept Phys, Los Angeles, CA 90089 USA
关键词
LARGE-AREA; FILMS; GROWTH;
D O I
10.1063/1.4768921
中图分类号
O59 [应用物理学];
学科分类号
摘要
We show that the I-V characteristics of graphene-silicon junctions can be actively tuned from rectifying to Ohmic behavior by electrostatically doping the graphene with a polymer electrolyte gate. Under zero applied gate voltage, we observe rectifying I-V characteristics, demonstrating the formation of a Schottky junction at the graphene-silicon interface. Through appropriate gating, the Fermi energy of the graphene can be varied to match the conduction or valence band of silicon, thus forming Ohmic contacts with both n- and p-type silicon. Over the applied gate voltage range, the low bias conductance can be varied by more than three orders of magnitude. By varying the top gate voltage from -4 to +4V, the Fermi energy of the graphene is shifted between -3.78 and -5.47 eV; a shift of +/- 0.85 eV from the charge neutrality point. Since the conduction and valence bands of the underlying silicon substrate lie within this range, at -4.01 and -5.13 eV, the Schottky barrier height and depletion width can be decreased to zero for both n- and p-type silicon under the appropriate top gating conditions. I-V characteristics taken under illumination show that the photoinduced current can be increased or decreased based on the graphene-silicon work function difference. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4768921]
引用
收藏
页数:4
相关论文
共 29 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]   Graphene-Silicon Schottky Diodes (vol 11, pg 1863, 2011) [J].
Chen, Chun-Chung ;
Aykol, Mehmet ;
Chang, Chia-Chi ;
Levi, A. F. J. ;
Cronin, Stephen B. .
NANO LETTERS, 2011, 11 (11) :5097-5097
[3]   Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor [J].
Das, A. ;
Pisana, S. ;
Chakraborty, B. ;
Piscanec, S. ;
Saha, S. K. ;
Waghmare, U. V. ;
Novoselov, K. S. ;
Krishnamurthy, H. R. ;
Geim, A. K. ;
Ferrari, A. C. ;
Sood, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :210-215
[4]   Multiband transport in bilayer graphene at high carrier densities [J].
Efetov, Dmitri K. ;
Maher, Patrick ;
Glinskis, Simas ;
Kim, Philip .
PHYSICAL REVIEW B, 2011, 84 (16)
[5]   Controlling Electron-Phonon Interactions in Graphene at Ultrahigh Carrier Densities [J].
Efetov, Dmitri K. ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2010, 105 (25)
[6]   Graphene/Silicon Nanowire Schottky Junction for Enhanced Light Harvesting [J].
Fan, Guifeng ;
Zhu, Hongwei ;
Wang, Kunlin ;
Wei, Jinquan ;
Li, Xinming ;
Shu, Qinke ;
Guo, Ning ;
Wu, Dehai .
ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (03) :721-725
[7]   Graphene based Schottky junction solar cells on patterned silicon-pillar-array substrate [J].
Feng, Tingting ;
Xie, Dan ;
Lin, Yuxuan ;
Zang, Yongyuan ;
Ren, Tianling ;
Song, Rui ;
Zhao, Haiming ;
Tian, He ;
Li, Xiao ;
Zhu, Hongwei ;
Liu, Litian .
APPLIED PHYSICS LETTERS, 2011, 99 (23)
[8]   Hot Carrier-Assisted Intrinsic Photoresponse in Graphene [J].
Gabor, Nathaniel M. ;
Song, Justin C. W. ;
Ma, Qiong ;
Nair, Nityan L. ;
Taychatanapat, Thiti ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Levitov, Leonid S. ;
Jarillo-Herrero, Pablo .
SCIENCE, 2011, 334 (6056) :648-652
[9]   Modulation doping of graphene: An approach toward manufacturable devices [J].
Gu, Gong ;
Xie, Zhijian .
APPLIED PHYSICS LETTERS, 2011, 98 (08)
[10]   Large-scale pattern growth of graphene films for stretchable transparent electrodes [J].
Kim, Keun Soo ;
Zhao, Yue ;
Jang, Houk ;
Lee, Sang Yoon ;
Kim, Jong Min ;
Kim, Kwang S. ;
Ahn, Jong-Hyun ;
Kim, Philip ;
Choi, Jae-Young ;
Hong, Byung Hee .
NATURE, 2009, 457 (7230) :706-710