Numerical simulation of Camassa-Holm peakons by adaptive upwinding

被引:38
作者
Artebrant, R [1 ]
Schroll, HJ [1 ]
机构
[1] Lund Univ, Ctr Math Sci, SE-22100 Lund, Sweden
关键词
Camassa-Holm equation; peakon dynamics; adaptive finite-volume method;
D O I
10.1016/j.apnum.2005.06.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Camassa-Holm equation is a conservation law with a non-local flux that models shallow water waves and features soliton solutions with a corner at their crests, so-called peakons. In the present paper a finite-volume method is developed to simulate the dynamics of peakons. This conservative scheme is adaptive, high resolution and stable without any explicit introduction of artificial viscosity. A numerical simulation indicates that a certain plateau shaped travelling wave solution breaks up in time. (c) 2005 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:695 / 711
页数:17
相关论文
共 18 条
[1]  
Artebrant R, 2003, HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, P305
[2]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[3]  
Camassa R., 1994, Adv. Appl. Mech., V31, P1, DOI DOI 10.1016/S0065-2156(08)70254-0
[4]  
Constantin A, 2000, COMMUN PUR APPL MATH, V53, P603
[5]   Wave breaking for nonlinear nonlocal shallow water equations [J].
Constantin, A ;
Escher, J .
ACTA MATHEMATICA, 1998, 181 (02) :229-243
[6]  
Constantin A, 1998, INDIANA U MATH J, V47, P1527
[7]   On the blow-up rate and the blow-up set of breaking waves for a shallow water equation [J].
Constantin, A ;
Escher, J .
MATHEMATISCHE ZEITSCHRIFT, 2000, 233 (01) :75-91
[8]  
Constantin Adrian, 1997, EXPO MATH, V15, P251
[9]   A note on well-posedness for Camassa-Holm equation [J].
Danchin, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 192 (02) :429-444
[10]   Integrable vs. nonintegrable geodesic soliton behavior [J].
Fringer, OB ;
Holm, DD .
PHYSICA D, 2001, 150 (3-4) :237-263