All-Graphene Planar Double Barrier Resonant Tunneling Diodes

被引:15
作者
Al-Dirini, Feras [1 ,2 ,3 ]
Hossain, Faruque M. [1 ,2 ]
Nirmalathas, Ampalavanapillai [1 ]
Skafidas, Efstratios [1 ,2 ]
机构
[1] Univ Melbourne, Dept Elect & Elect Engn, Parkville, Vic 3010, Australia
[2] Univ Melbourne, Ctr Neural Engn, Parkville, Vic 3010, Australia
[3] Natl ICT Australia, Victorian Res Lab, West Melbourne, Vic 3003, Australia
关键词
Double barrier; extended Huckel; graphene; planar diode; resonant tunneling; rectifier; NDR; NEGF;
D O I
10.1109/JEDS.2014.2327375
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, we propose an atomically-thin all-graphene planar double barrier resonant tunneling diode that can be realized within a single graphene nanoribbon. The proposed device does not require any doping or external gating and can be fabricated using minimal process steps. The planar architecture of the device allows a simple in-plane connection of multiple devices in parallel without any extra processing steps during fabrication, enhancing the current driving capabilities of the device. Quantum mechanical simulation results, based on non-equilibrium Green's function formalism and the extended Huckel method, show promising device performance with a high reverse-to-forward current rectification ratio exceeding 50 000, and confirm the presence of negative differential resistance within the device's current-voltage characteristics.
引用
收藏
页码:118 / 122
页数:5
相关论文
共 50 条
[41]   High-speed switching of double-barrier resonant-tunneling light-emitting diodes investigated by picosecond electroluminescence measurements [J].
Romandic, I ;
Zurauskiene, N ;
Goovaerts, E ;
Van Hoof, C ;
Borghs, G .
ULTRAFAST PHENOMENA IN SEMICONDUCTORS, 1999, 297-2 :29-32
[42]   Fabrication of Wearable Transistor with All-Graphene Electrodes via Hot Pressing [J].
Kim, Youn ;
Hong, Jin-Yong ;
Jeon, Young-Pyo ;
Park, Jung Bin ;
Lee, Cheol Jin ;
Lee, Jea Uk .
POLYMERS, 2022, 14 (13)
[43]   All-Graphene Three-Terminal-Junction Field-Effect Devices as Rectifiers and Inverters [J].
Kim, Wonjae ;
Li, Changfeng ;
Chekurov, Nikolai ;
Arpiainen, Sanna ;
Akinwande, Deji ;
Lipsanen, Harri ;
Riikonen, Juha .
ACS NANO, 2015, 9 (06) :5666-5674
[44]   Modeling of tunneling current density of GeC based double barrier multiple quantum well resonant tunneling diode [J].
Swagata Dey ;
Vedatrayee Chakraborty ;
Bratati Mukhopadhyay ;
Gopa Sen .
Journal of Semiconductors, 2018, (10) :38-42
[45]   Modeling of tunneling current density of GeC based double barrier multiple quantum well resonant tunneling diode [J].
Dey, Swagata ;
Chakraborty, Vedatrayee ;
Mukhopadhyay, Bratati ;
Sen, Gopa .
JOURNAL OF SEMICONDUCTORS, 2018, 39 (10)
[46]   Theoretical Study of Resonant Tunneling in ZnO/ZnCdO Triangular Double-Barrier Heterostructure [J].
Lavanya, E. ;
Chandrasekar, L. Bruno ;
Karunakaran, M. ;
Dinesh, A. ;
Gnanasekaran, Lalitha ;
Santhamoorthy, Madhappan ;
Priyadharshini, E. ;
Guganathan, L. .
SEMICONDUCTORS, 2025, 59 (03) :211-216
[47]   Current oscillations in Schottky-barrier CNTFET: towards resonant tunneling device operation [J].
Shaker, Ahmed ;
Ossaimee, Mahmoud .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2018, 33 (03)
[48]   Observation of resonances by individual energy levels in InGaAs/AlAs triple-barrier resonant tunneling diodes [J].
Jo, J ;
Choi, YI ;
Kim, DM ;
Alt, K ;
Wang, KL .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1998, 37 (3B) :1654-1656
[49]   Neutral-Color Semitransparent Organic Solar Cells with All-Graphene Electrodes [J].
Liu, Zhike ;
You, Peng ;
Liu, Shenghua ;
Yan, Feng .
ACS NANO, 2015, 9 (12) :12026-12034
[50]   The resonant condition of transmission in the graphene-based double-barrier structures [J].
Sakhnyuk, V. E. ;
Shutovskyi, A. M. ;
Fedosov, S. A. ;
Zamuruyeva, O. V. .
LOW TEMPERATURE PHYSICS, 2022, 48 (10) :806-810