Irreducibility of perfect representations of double affine Hecke algebras

被引:0
作者
Cherednik, I [1 ]
机构
[1] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
来源
STUDIES IN LIE THEORY: DEDICATED TO A. JOSEPH ON HIS SIXTIETH BIRTHDAY | 2006年 / 243卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that the quotient of the polynomial representation of the double affine Hecke algebra by the radical of the duality pairing is always irreducible apart from the roots of unity provided that it is finite dimensional. We also find necessary and Sufficient conditions for the radical to be zero, a generalization of Opdam's formula for the singular parameters such that the corresponding Dunkl operators have multiple zero-eigenvalues.
引用
收藏
页码:79 / 95
页数:17
相关论文
共 12 条
[1]  
BOURBAKI N, 1969, GROUPES ALGEBRES LIE, pCH4
[2]   Diagonal coinvariants and double affine Hecke algebras [J].
Cherednik, I .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (16) :769-791
[3]   Double affine Hecke algebras and difference Fourier transforms [J].
Cherednik, I .
INVENTIONES MATHEMATICAE, 2003, 152 (02) :213-303
[4]   MACDONALDS EVALUATION CONJECTURES AND DIFFERENCE FOURIER-TRANSFORM [J].
CHEREDNIK, I .
INVENTIONES MATHEMATICAE, 1995, 122 (01) :119-145
[5]  
CHEREDNIK I, 2003, SELECTA MAT NEW SER, V9, P1022
[6]  
CHEREDNIK IV, 1995, IMRN, V10, P483
[7]  
DEJEU M, 1993, THESIS, P1
[8]   Dunkl operators for complex reflection groups [J].
Dunkl, CF ;
Opdam, EM .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2003, 86 :70-108
[9]   SINGULAR POLYNOMIALS FOR FINITE REFLECTION GROUPS [J].
DUNKL, CF ;
DEJEU, MF ;
OPDAM, EM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 346 (01) :237-256
[10]  
MACDONALD IG, 1995, SEMINAIRE BOURBAKI, V47, P1