Robust and efficient COVID-19 detection techniques: A machine learning approach

被引:5
作者
Hasan, Md Mahadi [1 ]
Murtaz, Saba Binte [1 ]
Islam, Muhammad Usama [2 ]
Sadeq, Muhammad Jafar [1 ]
Uddin, Jasim [3 ]
机构
[1] Asian Univ Bangladesh, Dept Comp Sci & Engn, Dhaka, Bangladesh
[2] Univ Louisiana Lafayette, Sch Comp & Informat, Lafayette, LA 70504 USA
[3] Cardiff Metropolitan Univ, Cardiff Sch Technol, Dept Appl Comp & Engn, Cardiff, S Glam, Wales
关键词
PRE-MIRNAS; MICRORNA; RNA; CLASSIFICATION; PREDICTION; TARGETS; DISEASE; GENES;
D O I
10.1371/journal.pone.0274538
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The devastating impact of the Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) pandemic almost halted the global economy and is responsible for 6 million deaths with infection rates of over 524 million. With significant reservations, initially, the SARS-CoV-2 virus was suspected to be infected by and closely related to Bats. However, over the periods of learning and critical development of experimental evidence, it is found to have some similarities with several gene clusters and virus proteins identified in animal-human transmission. Despite this substantial evidence and learnings, there is limited exploration regarding the SARS-CoV-2 genome to putative microRNAs (miRNAs) in the virus life cycle. In this context, this paper presents a detection method of SARS-CoV-2 precursor-miRNAs (pre-miRNAs) that helps to identify a quick detection of specific ribonucleic acid (RNAs). The approach employs an artificial neural network and proposes a model that estimated accuracy of 98.24%. The sampling technique includes a random selection of highly unbalanced datasets for reducing class imbalance following the application of matriculation artificial neural network that includes accuracy curve, loss curve, and confusion matrix. The classical approach to machine learning is then compared with the model and its performance. The proposed approach would be beneficial in identifying the target regions of RNA and better recognising of SARS-CoV-2 genome sequence to design oligonucleotide-based drugs against the genetic structure of the virus.
引用
收藏
页数:21
相关论文
共 77 条
[1]   Role of biological Data Mining and Machine Learning Techniques in Detecting and Diagnosing the Novel Coronavirus (COVID-19): A Systematic Review [J].
Albahri, A. S. ;
Hamid, Rula A. ;
Alwan, Jwan K. ;
Al-qays, Z. T. ;
Zaidan, A. A. ;
Zaidan, B. B. ;
Albahri, A. O. S. ;
AlAmoodi, A. H. ;
Khlaf, Jamal Mawlood ;
Almahdi, E. M. ;
Thabet, Eman ;
Hadi, Suha M. ;
Mohammed, K., I ;
Alsalem, M. A. ;
Al-Obaidi, Jameel R. ;
Madhloom, H. T. .
JOURNAL OF MEDICAL SYSTEMS, 2020, 44 (07)
[2]   Systematic review of artificial intelligence techniques in the detection and classification of COVID-19 medical images in terms of evaluation and benchmarking: Taxonomy analysis, challenges, future solutions and methodological aspects [J].
Albahri, O. S. ;
Zaidan, A. A. ;
Albahri, A. S. ;
Zaidan, B. B. ;
Abdulkareem, Karrar Hameed ;
Al-qaysi, Z. T. ;
Alamoodi, A. H. ;
Aleesa, A. M. ;
Chyad, M. A. ;
Alesa, R. M. ;
Kem, L. C. ;
Lakulu, Muhammad Modi ;
Ibrahim, A. B. ;
Rashid, Nazre Abdul .
JOURNAL OF INFECTION AND PUBLIC HEALTH, 2020, 13 (10) :1381-1396
[3]  
Allmer Jens, 2012, Frontiers in Genetics, V3, P209, DOI 10.3389/fgene.2012.00209
[4]  
[Anonymous], OTHER USEFUL BUSINES
[5]   microPred: effective classification of pre-miRNAs for human miRNA gene prediction [J].
Batuwita, Rukshan ;
Palade, Vasile .
BIOINFORMATICS, 2009, 25 (08) :989-995
[6]   Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets [J].
Belkina, Anna C. ;
Ciccolella, Christopher O. ;
Anno, Rina ;
Halpert, Richard ;
Spidlen, Josef ;
Snyder-Cappione, Jennifer E. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[7]   Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites [J].
Betel, Doron ;
Koppal, Anjali ;
Agius, Phaedra ;
Sander, Chris ;
Leslie, Christina .
GENOME BIOLOGY, 2010, 11 (08)
[8]   A Survey of Predictive Modeling on Im balanced Domains [J].
Branco, Paula ;
Torgo, Luis ;
Ribeiro, Rita P. .
ACM COMPUTING SURVEYS, 2016, 49 (02)
[9]   Deep Learning for the discovery of new pre-miRNAs: Helping the fight against COVID-19 [J].
Bugnon, L. A. ;
Raad, J. ;
Merino, G. A. ;
Yones, C. ;
Ariel, F. ;
Milone, D. H. ;
Stegmayer, G. .
MACHINE LEARNING WITH APPLICATIONS, 2021, 6
[10]   Genome-wide hairpins datasets of animals and plants for novel miRNA prediction [J].
Bugnon, L. A. ;
Yones, C. ;
Raad, J. ;
Milone, D. H. ;
Stegmayer, G. .
DATA IN BRIEF, 2019, 25