Kernel of locally nilpotent R-derivations of R[X,Y]

被引:23
作者
Bhatwadekar, SM [1 ]
Dutta, AK [1 ]
机构
[1] INDIAN STAT INST,STAT MATH UNIT,CALCUTTA 700035,W BENGAL,INDIA
关键词
locally nilpotent derivations; inert subrings; symbolic Rees algebra;
D O I
10.1090/S0002-9947-97-01946-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the kernel of a non-zero locally nilpotent R-derivation of the polynomial ring R[X, Y] over a noetherian integral domain R containing a field of characteristic zero. We show that if R is normal then the kernel has a graded R-algebra structure isomorphic to the symbolic Rees algebra of an unmixed ideal of height one in R, and, conversely the symbolic Rees algebra of any unmixed height one ideal in R can be embedded in R[X, Y] as the kernel of a locally nilpotent R-derivation of R[X, Y]. We also give a necessary and sufficient criterion for the kernel to be a polynomial ring in general.
引用
收藏
页码:3303 / 3319
页数:17
相关论文
共 13 条
[1]   UNIQUENESS OF COEFFICIENT RING IN A POLYNOMIAL RING [J].
ABHYANKAR, SS ;
HEINZER, W ;
EAKIN, P .
JOURNAL OF ALGEBRA, 1972, 23 (02) :310-+
[2]  
Altman A., 1970, Introduction to Grothendieck duality theory
[3]  
BASS H, 1977, INVENT MATH, V38, P279
[4]   ON RESIDUAL VARIABLES AND STABLY POLYNOMIAL ALGEBRAS [J].
BHATWADEKAR, SM ;
DUTTA, AK .
COMMUNICATIONS IN ALGEBRA, 1993, 21 (02) :635-645
[5]  
BRUNS W, 1993, COHENMACAULAY RINGS
[6]  
Cowsik R. C., 1984, Lecture Notes in Pure and Appl. Math., V91, P13
[7]  
DAIGLE D, LOCALLY NILPOTENT DE
[9]  
Nagata M, 1962, Interscience Tracts in Pure and Applied Mathematics, V13
[10]  
Onoda N., 1984, Japan. J. Math. (N.S.), V10, P29