Specificity of Processing α-Glucosidase I Is Guided by the Substrate Conformation CRYSTALLOGRAPHIC AND IN SILICO STUDIES

被引:77
作者
Barker, Megan K.
Rose, David R. [1 ]
机构
[1] Univ Waterloo, Dept Biol, Waterloo, ON N2L 3G1, Canada
基金
美国能源部; 美国国家卫生研究院; 加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
ENDOPLASMIC-RETICULUM; PROTEIN GLYCOSYLATION; N-GLYCOSYLATION; PURIFICATION; OLIGOSACCHARIDE; GLYCOPROTEIN; BINDING; INHIBITION; RESIDUES; COMPLEX;
D O I
10.1074/jbc.M113.460436
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Processing alpha-glucosidase I (GluI) is a key member of the eukaryotic N-glycosylation processing pathway, selectively catalyzing the first glycoprotein trimming step in the endoplasmic reticulum. Inhibition of GluI activity impacts the infectivity of enveloped viruses; however, despite interest in this protein from a structural, enzymatic, and therapeutic standpoint, little is known about its structure and enzymatic mechanism in catalysis of the unique glycan substrate Glc(3)Man(9)GlcNAc(2). The first structural model of eukaryotic GluI is here presented at 2-angstrom resolution. Two catalytic residues are proposed, mutations of which result in catalytically inactive, properly folded protein. Using Autodocking methods with the known substrate and inhibitors as ligands, including a novel inhibitor characterized in this work, the active site of GluI was mapped. From these results, a model of substrate binding has been formulated, which is most likely conserved in mammalian GluI.
引用
收藏
页码:13563 / 13574
页数:12
相关论文
共 68 条
[1]   PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Davis, Ian W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Kapral, Gary J. ;
Grosse-Kunstleve, Ralf W. ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :213-221
[2]   Crystal structure and evolution of a prokaryotic glucoamylase [J].
Aleshin, AE ;
Feng, PH ;
Honzatko, RB ;
Reilly, PJ .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 327 (01) :61-73
[3]   On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database [J].
Apweiler, R ;
Hermjakob, H ;
Sharon, N .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 1999, 1473 (01) :4-8
[4]   NITROGEN-IN-THE-RING PYRANOSES AND FURANOSES - STRUCTURAL BASIS OF INHIBITION OF MAMMALIAN GLYCOSIDASES [J].
ASANO, N ;
OSEKI, K ;
KIZU, H ;
MATSUI, K .
JOURNAL OF MEDICINAL CHEMISTRY, 1994, 37 (22) :3701-3706
[5]   Production and crystallization of processing α-glucosidase I: Pichia pastoris expression and a two-step purification toward structural determination [J].
Barker, Megan K. ;
Wilkinson, Brendan L. ;
Faridmoayer, Amirreza ;
Scaman, Christine H. ;
Fairbanks, Antony J. ;
Rose, David R. .
PROTEIN EXPRESSION AND PURIFICATION, 2011, 79 (01) :96-101
[6]   PURIFICATION AND CHARACTERIZATION OF TRIMMING GLUCOSIDASE-I FROM PIG-LIVER [J].
BAUSE, E ;
SCHWEDEN, J ;
GROSS, A ;
ORTHEN, B .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1989, 183 (03) :661-669
[7]   PURIFICATION AND CHARACTERIZATION OF TRIMMING GLUCOSIDASE-I FROM SACCHAROMYCES-CEREVISIAE [J].
BAUSE, E ;
ERKENS, R ;
SCHWEDEN, J ;
JAENICKE, L .
FEBS LETTERS, 1986, 206 (02) :208-212
[8]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[9]   Screening for phasing atoms in protein crystallography [J].
Boggon, TJ ;
Shapiro, L .
STRUCTURE, 2000, 8 (07) :R143-R149
[10]   Carbohydrate-binding modules: fine-tuning polysaccharide recognition [J].
Boraston, AB ;
Bolam, DN ;
Gilbert, HJ ;
Davies, GJ .
BIOCHEMICAL JOURNAL, 2004, 382 (03) :769-781