Time frequency and array processing of non-stationary signals

被引:1
作者
Belouchrani, Adel [1 ]
Abed-Meraim, Karim [2 ]
Boashash, Boualem [3 ,4 ]
机构
[1] Ecole Natl Polytech, Dept Elect Engn, Algiers, Algeria
[2] Univ Orleans, PolytechOrleans, Orleans, France
[3] Univ Queensland, Brisbane, Qld 4072, Australia
[4] Qatar Univ, Coll Engn, Doha, Qatar
来源
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING | 2012年
关键词
S-TRANSFORM; SEPARATION; CLASSIFICATION; DOMAIN;
D O I
10.1186/1687-6180-2012-230
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The special issue of EURASIP Journal on Advances in Signal Processing 2012 focuses on the synergistic relationship between time-frequency methods and array signal processing methods and addresses recent developments. In the article 'Joint DOD/DOA estimation in MIMO radar exploiting time-frequency signal representations' Yimin Zhang and co-researchers deal with the joint estimation of direction-of-departure (DOD) and direction-of-arrival (DOA) information of maneuvering targets in a bistatic multiple-input multiple-output (MIMO) radar system when exploiting spatial time-frequency distribution (STFD). In the article 'Estimating the number of components of a multicomponent nonstationary signal using the short term time-frequency Rényi entropy,' Victor Sucic and co-researchers propose a solution to the problem of detecting the local number of signal components by resorting to the short-term Rényi entropy of signals in the time-frequency plane.
引用
收藏
页数:4
相关论文
共 50 条
  • [11] Refining the ambiguity domain characteristics of non-stationary signals for improved time-frequency analysis: Test case of multidirectional and multicomponent piecewise LFM and HFM signals
    Boashash, Boualem
    Jawad, Brahim K.
    Ouelha, Samir
    DIGITAL SIGNAL PROCESSING, 2018, 83 : 367 - 382
  • [12] Detection of Non-Stationary GW Signals in High Noise From Cohen's Class of Time-Frequency Representations Using Deep Learning
    Lopac, Nikola
    Hrzic, Franko
    Vuksanovic, Irena Petrijevcanin
    Lerga, Jonatan
    IEEE ACCESS, 2022, 10 : 2408 - 2428
  • [13] Prediction and classification of non-stationary categorical time series
    Fokianos, K
    Kedem, B
    JOURNAL OF MULTIVARIATE ANALYSIS, 1998, 67 (02) : 277 - 296
  • [14] Classification of multivariate non-stationary signals: The SLEX-shrinkage approach
    Bohm, Hilmar
    Ombao, Hernando
    von Sachs, Rainer
    Sanes, Jerome
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (12) : 3754 - 3763
  • [15] Non-stationary power signal processing for pattern recognition using HS-transform
    Biswal, B.
    Dash, P. K.
    Panigrahi, B. K.
    APPLIED SOFT COMPUTING, 2009, 9 (01) : 107 - 117
  • [16] A new approach to time-frequency analysis and pattern recognition of non-stationary power signal disturbances
    Dash, P. K.
    Biswal, B. K.
    Panigrahi, B. K.
    ENGINEERING INTELLIGENT SYSTEMS FOR ELECTRICAL ENGINEERING AND COMMUNICATIONS, 2006, 14 (01): : 3 - 14
  • [17] Enhancing the resolution of non-stationary seismic data using improved time-frequency spectral modelling
    Zhou, Huai-lai
    Wang, Chang-cheng
    Marfurt, Kurt J.
    Jiang, Yi-wei
    Bi, Jian-xia
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2016, 205 (01) : 203 - 219
  • [18] A new optimized Stockwell transform applied on synthetic and real non-stationary signals
    Moukadem, Ali
    Bouguila, Zied
    Abdeslam, Djaffar Ould
    Dieterlen, Alain
    DIGITAL SIGNAL PROCESSING, 2015, 46 : 226 - 238
  • [19] A time series pre-processing methodology with statistical and spectral analysis for classifying non-stationary stochastic biosignals
    Fong, Simon
    Cho, Kyungeun
    Mohammed, Osama
    Fiaidhi, Jinan
    Mohammed, Sabah
    JOURNAL OF SUPERCOMPUTING, 2016, 72 (10) : 3887 - 3908
  • [20] New Power Quality Indices Based on S-transform for Non-stationary Signals
    Naik, Chirag A.
    Kundu, Prasanta
    2012 IEEE INTERNATIONAL CONFERENCE ON POWER AND ENERGY (PECON), 2012, : 677 - 682