Ionic liquids-based processing of electrically conducting chitin nanocomposite scaffolds for stem cell growth

被引:23
作者
Singh, Nandita [1 ]
Koziol, Krzysztof K. K. [2 ]
Chen, Jinhu [2 ]
Patil, Avinash J. [3 ]
Gilman, Jeffrey W. [4 ]
Trulove, Paul C. [5 ]
Kafienah, Wael [1 ]
Rahatekar, Sameer S. [6 ]
机构
[1] Univ Bristol, Sch Cellular & Mol Med, Bristol BS8 1TD, Avon, England
[2] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England
[3] Univ Bristol, Sch Chem, Ctr Organized Matter Chem, Bristol BS8 1TS, Avon, England
[4] Natl Inst Stand & Technol, Sustainable Polymers Grp, Div Engn & Mat Sci, Gaithersburg, MD 20899 USA
[5] USN Acad, Dept Chem, Annapolis, MD 21402 USA
[6] Univ Bristol, ACCIS, Bristol BS8 1TR, Avon, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
WALL CARBON NANOTUBES; CHITOSAN; DIFFERENTIATION; STIMULATION; DISSOLUTION; EXTRACTION; TOXICITY; FILMS; REGENERATION; PERCOLATION;
D O I
10.1039/c3gc37087a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the present study, we have successfully combined the biocompatible properties of chitin with the high electrical conductivity of carbon nanotubes (CNTs) by mixing them using an imidazolium-based ionic liquid as a common solvent/dispersion medium. The resulting nanocomposites demonstrated uniform distribution of CNTs, as shown by scanning electron microscopy (SEM) and optical microscopy. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction confirmed the a-crystal structure of chitin in the regenerated chitin nanocomposite scaffolds. Increased CNT concentration in the chitin matrix resulted in higher conductivity of the scaffolds. Human mesenchymal stem cells adhered to, and proliferated on, chitin-CNT nanocomposites with different ratios. Cell growth in the first 3 days was similar on all composites at a range of (0.01 to 0.07) weight fraction of CNT. However, composites at a 0.1 weight fraction of CNTs showed reduced cell attachment. There was a significant increase in cell proliferation using 0.07 weight fraction CNT composites, suggesting a stem cell enhancing function for CNTs at this concentration. In conclusion, the ionic liquid allowed the uniform dispersion of CNTs and dissolution of chitin to create a biocompatible, electrically conducting scaffold permissive for mesenchymal stem cell function. This method will enable the fabrication of chitin-based advanced multifunctional biocompatible scaffolds where electrical conduction is critical for tissue function.
引用
收藏
页码:1192 / 1202
页数:11
相关论文
共 62 条
[1]   Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf [J].
Al Sagheer, F. A. ;
Al-Sughayer, M. A. ;
Muslim, S. ;
Elsabee, M. Z. .
CARBOHYDRATE POLYMERS, 2009, 77 (02) :410-419
[2]   Chitin characterization by SEM, FTIR, XRD, and 13C cross polarization/mass angle spinning NMR [J].
Cárdenas, G ;
Cabrera, G ;
Taboada, E ;
Miranda, SP .
JOURNAL OF APPLIED POLYMER SCIENCE, 2004, 93 (04) :1876-1885
[3]  
Cellot G, 2009, NAT NANOTECHNOL, V4, P126, DOI [10.1038/NNANO.2008.374, 10.1038/nnano.2008.374]
[4]   Carbon nanotubes promote neuron differentiation from human embryonic stem cells [J].
Chao, Tzu-I ;
Xiang, Shuhuai ;
Chen, Chi-Shuo ;
Chin, Wei-Chun ;
Nelson, A. J. ;
Wang, Changchun ;
Lu, Jennifer .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2009, 384 (04) :426-430
[5]   Facile preparation of robust and biocompatible chitin aerogels [J].
Ding, Beibei ;
Cai, Jie ;
Huang, Junchao ;
Zhang, Lina ;
Chen, Yun ;
Shi, Xiaowen ;
Du, Yumin ;
Kuga, Shigenori .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (12) :5801-5809
[6]   Nanotube networks in polymer nanocomposites: Rheology and electrical conductivity [J].
Du, FM ;
Scogna, RC ;
Zhou, W ;
Brand, S ;
Fischer, JE ;
Winey, KI .
MACROMOLECULES, 2004, 37 (24) :9048-9055
[7]   Physico-chemical processes in imidazolium ionic liquids [J].
Dupont, Jairton ;
Suarez, Paulo A. Z. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2006, 8 (21) :2441-2452
[8]   The distillation and volatility of ionic liquids [J].
Earle, MJ ;
Esperança, JMSS ;
Gilea, MA ;
Lopes, JNC ;
Rebelo, LPN ;
Magee, JW ;
Seddon, KR ;
Widegren, JA .
NATURE, 2006, 439 (7078) :831-834
[9]   IN-VITRO STUDY OF THE INTRINSIC TOXICITY OF SYNTHETIC SURFACES TO CELLS [J].
ERTEL, SI ;
RATNER, BD ;
KAUL, A ;
SCHWAY, MB ;
HORBETT, TA .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 1994, 28 (06) :667-675
[10]   Transfection efficiency and toxicity of polyethylenimine in differentiated Calu-3 and nondifferentiated COS-1 cell cultures [J].
Florea, BI ;
Meaney, C ;
Junginger, HE ;
Borchard, G .
AAPS PHARMSCI, 2002, 4 (03)