Continuous synthesis of high quality CdSe quantum dots in supercritical fluids

被引:27
作者
Chakrabarty, Arkajyoti [1 ,2 ]
Marre, Samuel [1 ]
Landis, Ryan F. [3 ]
Rotello, Vincent M. [3 ]
Maitra, Uday [4 ]
Del Guerzo, Andre [2 ]
Aymonier, Cyril [1 ]
机构
[1] Univ Bordeaux, CNRS, ICMCB, UPR9048, F-33600 Pessac, France
[2] Univ Bordeaux, CNRS, Inst Mol Sci, UMR5255, F-33400 Talence, France
[3] Univ Massachusetts, Dept Chem, Amherst, MA 01003 USA
[4] Indian Inst Sci, Dept Organ Chem, Bangalore 560012, Karnataka, India
关键词
SEMICONDUCTOR NANOCRYSTALS; FLOW-REACTOR; SOLAR-CELLS; MICROFLUIDICS; PERFORMANCE; PRECURSOR; DEVICES;
D O I
10.1039/c5tc01115a
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We demonstrate in here a powerful scalable technology to synthesize continuously high quality CdSe quantum dots (QDs) in supercritical hexane. Using a low cost, highly thermally stable Cd-precursor, cadmium deoxycholate, the continuous synthesis is performed in 400 mu m ID stainless steel capillaries resulting in CdSe QDs having sharp full-width-at-half-maxima (23 nm) and high photoluminescence quantum yields (45-55%). Transmission electron microscopy images show narrow particles sizes distribution (sigma <= 5%) with well-defined crystal lattices. Using two different synthesis temperatures (250 degrees C and 310 degrees C), it was possible to obtain zinc blende and wurtzite crystal structures of CdSe QDs, respectively. This synthetic approach allows achieving substantial production rates up to 200 mg of QDs per hour depending on the targeted size, and could be easily scaled to gram per hour.
引用
收藏
页码:7561 / 7566
页数:6
相关论文
共 35 条
  • [11] Mass transport and surface reactions in microfluidic systems
    Gervais, T
    Jensen, KF
    [J]. CHEMICAL ENGINEERING SCIENCE, 2006, 61 (04) : 1102 - 1121
  • [12] Scaled-up production of plasmonic nanoparticles using microfluidics: from metal precursors to functionalized and sterilized nanoparticles
    Gomez, Leyre
    Sebastian, Victor
    Irusta, Silvia
    Ibarra, Alfonso
    Arruebo, Manuel
    Santamaria, Jesus
    [J]. LAB ON A CHIP, 2014, 14 (02) : 325 - 332
  • [13] Grabolle M., 2008, Anal. Chem, V81, P6285
  • [14] Air-stable all-inorganic nanocrystal solar cells processed from solution
    Gur, I
    Fromer, NA
    Geier, ML
    Alivisatos, AP
    [J]. SCIENCE, 2005, 310 (5747) : 462 - 465
  • [15] Hybrid nanorod-polymer solar cells
    Huynh, WU
    Dittmer, JJ
    Alivisatos, AP
    [J]. SCIENCE, 2002, 295 (5564) : 2425 - 2427
  • [16] Microreaction engineering - is small better?
    Jensen, KF
    [J]. CHEMICAL ENGINEERING SCIENCE, 2001, 56 (02) : 293 - 303
  • [17] Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters
    Kamat, Prashant V.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (48) : 18737 - 18753
  • [18] Multiexcitons in Semiconductor Nanocrystals: A Platform for Optoelectronics at High Carrier Concentration
    Kambhampati, Patanjali
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (09): : 1182 - 1190
  • [19] Performance of light-emitting-diode based on quantum dots
    Kim, Sungwoo
    Im, Sang Hyuk
    Kim, Sang-Wook
    [J]. NANOSCALE, 2013, 5 (12) : 5205 - 5214
  • [20] Single-exciton optical gain in semiconductor nanocrystals
    Klimov, Victor I.
    Ivanov, Sergei A.
    Nanda, Jagjit
    Achermann, Marc
    Bezel, Ilya
    McGuire, John A.
    Piryatinski, Andrei
    [J]. NATURE, 2007, 447 (7143) : 441 - 446