Facial expression recognition using kernel canonical correlation analysis (KCCA)

被引:189
作者
Zheng, WM [1 ]
Zhou, XY
Zou, CR
Zhao, L
机构
[1] SE Univ, Res Ctr Learning Sci, Nanjing 210096, Jiangsu, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Dept Elect Engn, Nanjing 210044, Jiangsu, Peoples R China
[3] SE Univ, Engn Res Ctr Informat Proc & Applicat, Nanjing 210096, Jiangsu, Peoples R China
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2006年 / 17卷 / 01期
关键词
facial expression recognition (FER); generalized discriminant analysis (GDA); kernel canonical correlation analysis (KCCA); kernel method;
D O I
10.1109/TNN.2005.860849
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this correspondence, we address the facial expression recognition problem using kernel canonical correlation analysis (KCCA). Following the method proposed by Lyons et al. [7] and Zhang et al. [8], we manually locate 34 landmark points from each facial image and then convert these geometric points into a labeled graph (LG) [7] vector using the Gabor wavelet transformation method to represent the facial features. On the other hand, for each training facial image, the semantic ratings describing the basic expressions are combined into a six-dimensional semantic expression vector. Learning the correlation between the LG vector and the semantic expression vector is performed by KCCA. According to this correlation, we estimate the associated semantic expression vector of a given test image and then perform the expression classification according to this estimated semantic expression vector. Moreover, we also propose an improved KCCA algorithm to tackle the singularity problem of the Gram matrix. The experimental results on the Japanese female facial expression database and the Ekman's "Pictures of Facial Affect" database illustrate the effectiveness of the proposed method.
引用
收藏
页码:233 / 238
页数:6
相关论文
共 22 条
  • [1] [Anonymous], HUMAN INTERACTION LA
  • [2] Bach F.R., 2002, J MACHINE LEARNING R, V3, P1
  • [3] Generalized discriminant analysis using a kernel approach
    Baudat, G
    Anouar, FE
    [J]. NEURAL COMPUTATION, 2000, 12 (10) : 2385 - 2404
  • [4] Automatic facial expression analysis: a survey
    Fasel, B
    Luettin, J
    [J]. PATTERN RECOGNITION, 2003, 36 (01) : 259 - 275
  • [5] Hardoon D. R, 2003, CSDTR0302
  • [6] Relations between two sets of variates
    Hotelling, H
    [J]. BIOMETRIKA, 1936, 28 : 321 - 377
  • [7] Lai P L, 2000, Int J Neural Syst, V10, P365, DOI 10.1142/S012906570000034X
  • [8] Lattin J., 2003, ANAL MULTIVARIATE DA
  • [9] Independent component analysis of Gabor feature's for face recognition
    Liu, CJ
    Wechsler, H
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (04): : 919 - 928
  • [10] Coding facial expressions with Gabor wavelets
    Lyons, M
    Akamatsu, S
    Kamachi, M
    Gyoba, J
    [J]. AUTOMATIC FACE AND GESTURE RECOGNITION - THIRD IEEE INTERNATIONAL CONFERENCE PROCEEDINGS, 1998, : 200 - 205