Trigonometric fitted, eighth-order explicit Numerov-type methods

被引:62
作者
Berg, Dmitry B. [1 ]
Simos, T. E. [2 ,3 ]
Tsitouras, Ch. [3 ]
机构
[1] Ural Fed Univ, Grp Modern Computat Methods, 19 Mira St, Ekaterinburg 620002, Russia
[2] Neijiang Normal Univ, Coll Math & Informat Sci, Data Recovery Key Lab Sichuan Prov, Neijiang 641100, Peoples R China
[3] TEI Sterea Hellas, Dept Automat Engn, GR-34400 Psahna, Greece
关键词
hybrid Numerov methods; initial value problem; numerical solution; phase lag; variable coefficients; INITIAL-VALUE-PROBLEMS; VANISHED PHASE-LAG; KUTTA-NYSTROM METHODS; P-STABLE METHOD; PREDICTOR-CORRECTOR METHOD; 2ND-ORDER LINEAR IVPS; 2-STEP HYBRID METHODS; NOUMEROV-TYPE METHOD; SCHRODINGER-EQUATION; NUMERICAL-INTEGRATION;
D O I
10.1002/mma.4711
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the integration of the special second-order initial value problem of the form y=f(x,y). A recently introduced family of 7 stages, eighth-order methods, sharing constant coefficients, is used as base. This family is properly modified to derive phase fitted and zero dissipative methods (ie, trigonometric fitted) that are best suited for integrating oscillatory problems. Numerical tests over a set of problems shows enhanced performance when the purely linear part of the problems is rather large in comparison with the rest of nonlinear parts. An appendix implementing a MATLAB listing with the coefficients of the new method is also given.
引用
收藏
页码:1845 / 1854
页数:10
相关论文
共 64 条
[1]   A new family of symmetric linear four-step methods for the efficient integration of the Schrodinger equation and related oscillatory problems [J].
Alolyan, I. ;
Anastassi, Z. A. ;
Simos, T. E. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) :5370-5382
[2]   A family of high-order multistep methods with vanished phase-lag and its derivatives for the numerical solution of the Schrodinger equation [J].
Alolyan, Ibraheem ;
Simos, T. E. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (10) :3756-3774
[3]   A parametric symmetric linear four-step method for the efficient integration of the Schrodinger equation and related oscillatory problems [J].
Anastassi, Z. A. ;
Simos, T. E. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (16) :3880-3889
[4]  
[Anonymous], FILOMAT
[5]  
[Anonymous], 2017, Mathematica, Version 11.1
[6]   A ONE-STEP METHOD FOR DIRECT INTEGRATION OF STRUCTURAL DYNAMIC EQUATIONS [J].
BRUSA, L ;
NIGRO, L .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1980, 15 (05) :685-699
[7]  
Butcher J. C., 1964, J. Austral. Math. Soc., V4, P179, DOI DOI 10.1017/S1446788700023387
[8]   IMPLICIT RUNGE-KUTTA PROCESSES [J].
BUTCHER, JC .
MATHEMATICS OF COMPUTATION, 1964, 18 (85) :50-&
[10]   A NOUMEROV-TYPE METHOD WITH MINIMAL PHASE-LAG FOR THE INTEGRATION OF 2ND-ORDER PERIODIC INITIAL-VALUE PROBLEMS .2. EXPLICIT METHOD [J].
CHAWLA, MM ;
RAO, PS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1986, 15 (03) :329-337