Global Dynamics and Bifurcation of Periodic Orbits in a Modified Nose-Hoover Oscillator

被引:6
作者
Llibre, Jaume [1 ]
Messias, Marcelo [2 ]
Reinol, Alisson C. [3 ]
机构
[1] Univ Autonoma Barcelona UAB, Dept Matemat, Bellaterra 08193, Barcelona Ct, Spain
[2] Univ Estadual Paulista UNESP, Dept Matemat & Comp, BR-19060900 Presidente Prudente, SP, Brazil
[3] Univ Tecnol Fed Parana, Dept Acad Matemat, UTFPR, BR-86812460 Apucarana, Parana, Brazil
基金
巴西圣保罗研究基金会; 欧盟地平线“2020”;
关键词
Nose-Hoover oscillator; First integral; Periodic orbit; Averaging theory; Invariant tori; Chaotic dynamics; MOLECULAR-DYNAMICS; CANONICAL DYNAMICS; SYSTEM;
D O I
10.1007/s10883-020-09491-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We perform a global dynamical analysis of a modified Nose-Hoover oscillator, obtained as the perturbation of an integrable differential system. Using this new approach for studying such an oscillator, in the integrable cases, we give a complete description of the solutions in the phase space, including the dynamics at infinity via the Poincare compactification. Then using the averaging theory, we prove analytically the existence of a linearly stable periodic orbit which bifurcates from one of the infinite periodic orbits which exist in the integrable cases. Moreover, by a detailed numerical study, we show the existence of nested invariant tori around the bifurcating periodic orbit. Finally, starting with the integrable cases and increasing the parameter values, we show that chaotic dynamics may occur, due to the break of such an invariant tori, leading to the creation of chaotic seas surrounding regular regions in the phase space.
引用
收藏
页码:491 / 506
页数:16
相关论文
共 21 条
[11]   A MOLECULAR-DYNAMICS METHOD FOR SIMULATIONS IN THE CANONICAL ENSEMBLE [J].
NOSE, S .
MOLECULAR PHYSICS, 1984, 52 (02) :255-268
[12]   A UNIFIED FORMULATION OF THE CONSTANT TEMPERATURE MOLECULAR-DYNAMICS METHODS [J].
NOSE, S .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (01) :511-519
[13]   CANONICAL DYNAMICS OF THE NOSE OSCILLATOR - STABILITY, ORDER, AND CHAOS [J].
POSCH, HA ;
HOOVER, WG ;
VESELY, FJ .
PHYSICAL REVIEW A, 1986, 33 (06) :4253-4265
[14]   Quasiperiodicity and Chaos in a Generalized Nose-Hoover Oscillator [J].
Rech, Paulo C. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (10)
[15]   Strange attractors with various equilibrium types [J].
Sprott, J. C. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2015, 224 (08) :1409-1419
[16]   A dynamical system with a strange attractor and invariant tori [J].
Sprott, J. C. .
PHYSICS LETTERS A, 2014, 378 (20) :1361-1363
[17]   Heat conduction, and the lack thereof, in time-reversible dynamical systems: Generalized Nose-Hoover oscillators with a temperature gradient [J].
Sprott, Julien Clinton ;
Hoover, William Graham ;
Hoover, Carol Griswold .
PHYSICAL REVIEW E, 2014, 89 (04)
[18]   Some third-order ordinary differential equations [J].
Swinnerton-Dyer, Peter ;
Wagenknecht, Thomas .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2008, 40 :725-748
[19]  
Vehrulst F., 1996, NONLINEAR DIFFERENTI
[20]   The invariant tori of knot type and the interlinked invariant tori in the Nose-Hoover oscillator [J].
Wang, Lei ;
Yang, Xiao-Song .
EUROPEAN PHYSICAL JOURNAL B, 2015, 88 (03)