Computing the rank of elliptic curves over real quadratic number fields of class number 1

被引:4
作者
Cremona, JE
Serf, P
机构
[1] Univ Exeter, Dept Math, Exeter EX4 4QE, Devon, England
[2] Univ Saarland, Fachbereich Math 9, D-66041 Saarbrucken, Germany
关键词
elliptic curves; Mordell-Weil; real quadratic fields;
D O I
10.1090/S0025-5718-99-01055-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we describe an algorithm for computing the rank of an elliptic curve defined over a red quadratic field of class number one. This algorithm extends the one originally described by Birch and Swinnerton-Dyer for curves over Q. Several examples are included.
引用
收藏
页码:1187 / 1200
页数:14
相关论文
共 11 条
[1]  
Birch B., 1963, J REINE ANGEW MATH, V212, P7, DOI DOI 10.1515/CRLL.1963.212.7
[2]  
Cremona J. E., 1997, Algorithms for modular elliptic curves, V2nd
[3]  
CREMONA JE, 1996, CLASSICAL INVARIANTS
[4]  
GARRETT P, 1990, HOLOMORPHIC HILBERT
[5]  
GRAF H, 1995, THESIS U SAARLANDES
[6]  
Husemoller D., 1987, Elliptic Curves
[8]   Infinite descent on elliptic curves [J].
Siksek, S .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1995, 25 (04) :1501-1538
[9]  
Silverman J.H., 1992, Rational points on elliptic curves
[10]  
TATE J, 1961, RATIONAL POINTS ELLI