The cable trench problem: combining the shortest path and minimum spanning tree problems

被引:25
作者
Vasko, FJ [1 ]
Barbieri, RS
Rieksts, BQ
Reitmeyer, KL
Stott, KL
机构
[1] Bethlehem Steel Corp, Homer Res Labs, Bethlehem, PA 18016 USA
[2] Kutztown State Univ, Math & CIS Dept, Kutztown, PA 19530 USA
关键词
minimum spanning tree; shortest path; networks; graph theory; NP-completeness; heuristics;
D O I
10.1016/S0305-0548(00)00083-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Let G = (V, E) be a connected graph with specified vertex upsilon (0) is an element of V, length l(e) greater than or equal to 0 for each e is an element of E, and positive parameters tau and gamma. The cable-trench problem (CTP) is to find a spanning tree T such that taul(tau)(T) + gammal(gamma)(T) is minimized where l(tau)(T) is the total length of the spanning tree T and l(gamma)(T) is the total path length in T from upsilon (0) to all other vertices of V. Since all vertices must be connected to upsilon (0) and only edges from E are allowed, the solution will not be a Steiner tree. Consider the ratio R = tau/gamma. For R large enough the solution will be a minimum spanning tree and for R small enough the solution will be a shortest path. In this paper, the CTP will be shown to be NP-complete. A mathematical formulation for the CTP will be provided for specific values of tau and gamma. Also, a heuristic will be discussed that will solve the CTP for all values of R.
引用
收藏
页码:441 / 458
页数:18
相关论文
共 21 条
[1]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[2]  
[Anonymous], GRAPH THEORY ITS APP
[3]   A LINEAR ALGORITHM FOR ANALYSIS OF MINIMUM SPANNING AND SHORTEST-PATH TREES OF PLANAR GRAPHS [J].
BOOTH, H ;
WESTBROOK, J .
ALGORITHMICA, 1994, 11 (04) :341-352
[4]   A constrained minimum spanning tree problem [J].
Chen, GT ;
Zhang, GC .
COMPUTERS & OPERATIONS RESEARCH, 2000, 27 (09) :867-875
[5]  
Cook W., 1998, Combinatorial Optimization
[6]  
Cormen T. H., 1994, INTRO ALGORITHMS
[7]  
Dijkstra E. W., 1959, NUMER MATH, V1, P269, DOI DOI 10.1007/BF01386390
[8]  
EPPSTEIN D, 1999, COMPUTATIONAL THEORY
[9]  
EPPSTEIN D, 1999, COMMUNICATION 0603
[10]  
HILLIER FS, 1995, INTRO PERATIONS RES