A Method for Fast Computation of the Fourier Transform over a Finite Field

被引:47
作者
Trifonov, P. V. [1 ]
Fedorenko, S. V. [1 ]
机构
[1] St Petersburg State Polytech Univ, St Petersburg, Russia
关键词
D O I
10.1023/A:1026171930630
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the problem of fast computation of the Fourier transform over a finite field by decomposing an arbitrary polynomial into a sum of linearized polynomials. Examples of algorithms for the Fourier transform with complexity less than that of the best known analogs are given.
引用
收藏
页码:231 / 238
页数:8
相关论文
共 13 条
[1]  
Afanasyev V.B., 1987, POMEKHOUSTOICHIVOE K, P33
[2]  
AFANASYEV VB, 1993, P 6 JOINT SWED RUSS, P315
[3]  
Aho A., 1976, DESIGN ANAL COMPUTER
[4]  
Berlekamp E. R., 1968, ALGEBRAIC CODING THE
[5]  
Blahut R. E., 1983, THEORY PRACTICE ERRO
[6]  
BLAHUT RE, 1985, FAST ALGORITHMS DIGI
[7]  
Fedorenko S., 2002, PROC 8 INT WORKSHOP, P108
[8]   Finding roots of polynomials over finite fields [J].
Fedorenko, SV ;
Trifonov, PV .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2002, 50 (11) :1709-1711
[9]  
Gabidulin E.M., 1986, KODIROVANIE RADIOELE
[10]  
Mac Williams F., 1977, THEORY ERROR CORRECT