C2,α regularity of flat free boundaries for the thin one-phase problem

被引:18
作者
De Silva, D. [1 ]
Savin, O. [1 ]
机构
[1] Columbia Univ, Barnard Coll, Dept Math, New York, NY 10027 USA
关键词
One-phase free boundary problem; Harnack inequality;
D O I
10.1016/j.jde.2012.06.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove C-2,C-alpha regularity of sufficiently flat free boundaries, for the thin one-phase problem in which the free boundary occurs on a lower dimensional subspace. This problem appears also as a model of a one-phase free boundary problem in the context of the fractional Laplacian (-Delta)(1/2). (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:2420 / 2459
页数:40
相关论文
共 8 条
[1]  
ALT HW, 1981, J REINE ANGEW MATH, V325, P105
[2]   BOUNDARY-BEHAVIOR OF NONNEGATIVE SOLUTIONS OF ELLIPTIC-OPERATORS IN DIVERGENCE FORM [J].
CAFFARELLI, L ;
FABES, E ;
MORTOLA, S ;
SALSA, S .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (04) :621-640
[3]  
Caffarelli L.A., 1987, Rev. Mat. Iberoamericana, V3, P139
[4]   Variational problems with free boundaries for the fractional Laplacian [J].
Caffarelli, Luis A. ;
Roquejoffre, Jean-Michel ;
Sire, Yannick .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (05) :1151-1179
[5]  
De Giorgi E., 1957, Mem. Acad. Sci. Torino. Cl. Sci. Fis. Mat. Nat., V3, P25
[6]  
De Silva D., ANN I H POI IN PRESS
[7]   Small perturbation solutions for elliptic equations [J].
Savin, Ovidiu .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (04) :557-578
[8]   Partial regularity for weak solutions of an elliptic free boundary problem [J].
Weiss, GS .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1998, 23 (3-4) :439-455