Simple fabrication of an antireflective hemispherical surface structure using a self-assembly method for the terahertz frequency range

被引:13
作者
Kim, Dae-Seon [1 ]
Kim, Dong-Ju [1 ]
Kim, Dong-Hyun [1 ]
Hwang, Sehyun [2 ]
Jang, Jae-Hyung [1 ,2 ,3 ]
机构
[1] Gwangju Inst Sci & Technol, Sch Informat & Commun, Kwangju 500712, South Korea
[2] Gwangju Inst Sci & Technol, Res Inst Solar & Sustainable Energies, Kwangju 500712, South Korea
[3] WCU, Gwangju Inst Sci & Technol, Dept Nanobio Mat & Elect, Kwangju 500712, South Korea
基金
新加坡国家研究基金会;
关键词
BROAD-BAND; OPTICS; TECHNOLOGY; DOMAIN;
D O I
10.1364/OL.37.002742
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A hemispherical surface structure was fabricated on a sapphire substrate by utilizing a self-assembly and spin-coating process for a terahertz (THz) antireflection coating. The self-assembled glass spheres and spin-coated material led to a gradual change in the effective refractive index. The aspect ratio of the hemispherical surface structure was controlled easily by adjusting the thickness of the B-staged bisbenzocyclobutene used as a coating. The reflectance of the fabricated hemispherical surface structure, having a period of 140 mu m, exhibited low reflectance and low Fabry-Perot resonance in a THz spectral range from 0.1 to 1.9 THz. (C) 2012 Optical Society of America
引用
收藏
页码:2742 / 2744
页数:3
相关论文
共 14 条
[1]   Broadband antireflective surface-relief structure for THz optics [J].
Brueckner, Claudia ;
Pradarutti, Boris ;
Stenzel, Olaf ;
Steinkopf, Ralf ;
Riehemann, Stefan ;
Notni, Gunther ;
Tuennermann, Andreas .
OPTICS EXPRESS, 2007, 15 (03) :779-789
[2]   Tunable broadband antireflection structures for silicon at terahertz frequency [J].
Chen, Y. W. ;
Han, P. Y. ;
Zhang, X. -C. .
APPLIED PHYSICS LETTERS, 2009, 94 (04)
[3]   An antireflective silicon grating working in the resonance domain for the near infrared spectral region [J].
Escoubas, L ;
Simon, JJ ;
Loli, M ;
Berginc, G ;
Flory, F ;
Giovannini, H .
OPTICS COMMUNICATIONS, 2003, 226 (1-6) :81-88
[4]   Materials for terahertz science and technology [J].
Ferguson, B ;
Zhang, XC .
NATURE MATERIALS, 2002, 1 (01) :26-33
[5]   Terahertz time-domain spectroscopy and imaging of artificial RNA [J].
Fischer, BM ;
Hoffmann, M ;
Helm, H ;
Wilk, R ;
Rutz, F ;
Kleine-Ostmann, T ;
Koch, M ;
Jepsen, PU .
OPTICS EXPRESS, 2005, 13 (14) :5205-5215
[6]   An anti-reflection coating for silicon optics at terahertz frequencies [J].
Gatesman, AJ ;
Waldman, J ;
Ji, M ;
Musante, C ;
Yngvesson, S .
IEEE MICROWAVE AND GUIDED WAVE LETTERS, 2000, 10 (07) :264-266
[7]   Antireflection coating formed by plasma-enhanced chemical-vapor deposition for terahertz-frequency germanium optics [J].
Hosako, I .
APPLIED OPTICS, 2003, 42 (19) :4045-4048
[8]   Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures [J].
Huang, Yi-Fan ;
Chattopadhyay, Surojit ;
Jen, Yi-Jun ;
Peng, Cheng-Yu ;
Liu, Tze-An ;
Hsu, Yu-Kuei ;
Pan, Ci-Ling ;
Lo, Hung-Chun ;
Hsu, Chih-Hsun ;
Chang, Yuan-Huei ;
Lee, Chih-Shan ;
Chen, Kuei-Hsien ;
Chen, Li-Chyong .
NATURE NANOTECHNOLOGY, 2007, 2 (12) :770-774
[9]   Fabrication of cone-shaped subwavelength structures by utilizing a confined convective self-assembly technique and inductively coupled-plasma reactive-ion etching [J].
Kim, Dae-Seon ;
Park, Min-Su ;
Jang, Jae-Hyung .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2011, 29 (02)
[10]   Terahertz transparency at Fabry-Perot resonances of periodic slit arrays in a metal plate: experiment and theory [J].
Lee, J. W. ;
Seo, M. A. ;
Park, D. J. ;
Jeoung, S. C. ;
Park, Q. H. ;
Lienau, Ch. ;
Kim, D. S. .
OPTICS EXPRESS, 2006, 14 (26) :12637-12643