Genome-wide assessment of genetic risk for systemic lupus erythematosus and disease severity

被引:62
作者
Chen, Lingyan [1 ,2 ]
Wang, Yong-Fei [3 ]
Liu, Lu [4 ,5 ,6 ]
Bielowka, Adrianna [1 ]
Ahmed, Rahell [1 ]
Zhang, Huoru [3 ]
Tombleson, Phil [1 ]
Roberts, Amy L. [1 ,7 ]
Odhams, Christopher A. [1 ]
Graham, Deborah S. Cunninghame [1 ]
Zhang, Xuejun [4 ,5 ,6 ]
Yang, Wanling [3 ]
Vyse, Timothy J. [1 ]
Morris, David L. [1 ]
机构
[1] Kings Coll London, Dept Med & Mol Genet, London, England
[2] Univ Cambridge, MRC BHF Cardiovasc Epidemiol Unit, Cambridge, England
[3] Univ Hong Kong, LKS Fac Med, Dept Paediat & Adolescent Med, Hong Kong, Peoples R China
[4] Anhui Med Univ, Dept Dermatol, Hosp 1, Hefei, Anhui, Peoples R China
[5] Anhui Med Univ, Key Lab Dermatol, Minist Educ, Hefei, Anhui, Peoples R China
[6] Fudan Univ, Dept Dermatol, Huashan Hosp, Shanghai, Peoples R China
[7] Kings Coll London, Dept Twin Res & Genet Epidemiol, London, England
基金
英国医学研究理事会; 美国国家科学基金会;
关键词
SUSCEPTIBILITY VARIANTS; ASSOCIATION; COHORT; ONSET; SCORE; MANIFESTATIONS; FEATURES; ITGAM; LOCI;
D O I
10.1093/hmg/ddaa030
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Using three European and two Chinese genome-wide association studies (GWAS), we investigated the performance of genetic risk scores (GRSs) for predicting the susceptibility and severity of systemic lupus erythematosus (SLE), using renal disease as a proxy for severity. We used four GWASs to test the performance of GRS both cross validating within the European population and between European and Chinese populations. The performance of GRS in SLE risk prediction was evaluated by receiver operating characteristic (ROC) curves. We then analyzed the polygenic nature of SLE statistically. We also partitioned patients according to their age-of-onset and evaluated the predictability of GRS in disease severity in each age group. We found consistently that the best GRS in the prediction of SLE used SNPs associated at the level of P < 1e-05 in all GWAS data sets and that SNPs with P-values above 0.2 were inflated for SLE true positive signals. The GRS results in an area under the ROC curve ranging between 0.64 and 0.72, within European and between the European and Chinese populations. We further showed a significant positive correlation between a GRS and renal disease in two independent European GWAS (P-cohort1 = 2.44e-08; P-cohort2 = 0.00205) and a significant negative correlation with age of SLE onset (P-cohort1 =1.76e-12; P-cohort2 = 0.00384). We found that the GRS performed better in the prediction of renal disease in the `later onset' compared with the 'earlier onset' group. The GRS predicts SLE in both European and Chinese populations and correlates with poorer prognostic factors: young age-of-onset and lupus nephritis.
引用
收藏
页码:1745 / 1756
页数:12
相关论文
共 45 条
[11]   Clinical relevance of genome-wide polygenic score may be less than claimed [J].
Curtis, David .
ANNALS OF HUMAN GENETICS, 2019, 83 (04) :274-277
[12]   What is damaging the kidney in lupus nephritis? [J].
Davidson, Anne .
NATURE REVIEWS RHEUMATOLOGY, 2016, 12 (03) :143-153
[13]   Integration of genetic risk factors into a clinical algorithm for multiple sclerosis susceptibility: a weighted genetic risk score [J].
De Jager, Philip L. ;
Chibnik, Lori B. ;
Cui, Jing ;
Reischl, Joachim ;
Lehr, Stephan ;
Simon, K. Claire ;
Aubin, Cristin ;
Bauer, David ;
Heubach, Juergen F. ;
Sandbrink, Rupert ;
Tyblova, Michaela ;
Lelkova, Petra ;
Havrdova, Eva ;
Pohl, Christoph ;
Horakova, Dana ;
Ascherio, Alberto ;
Hafler, David A. ;
Karlson, Elizabeth W. .
LANCET NEUROLOGY, 2009, 8 (12) :1111-1119
[14]  
DEAPEN D, 1992, ARTHRITIS RHEUM, V35, P311
[15]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845
[16]   PRSice: Polygenic Risk Score software [J].
Euesden, Jack ;
Lewis, Cathryn M. ;
O'Reilly, Paul F. .
BIOINFORMATICS, 2015, 31 (09) :1466-1468
[17]   Epidemiology and sociodemographics of systemic lupus erythematosus and lupus nephritis among US adults with Medicaid coverage, 20002004 [J].
Feldman, Candace H. ;
Hiraki, Linda T. ;
Liu, Jun ;
Fischer, Michael A. ;
Solomon, Daniel H. ;
Alarcon, Graciela S. ;
Winkelmayer, Wolfgang C. ;
Costenbader, Karen H. .
ARTHRITIS AND RHEUMATISM, 2013, 65 (03) :753-763
[18]   Clusters of clinical and immunologic features in systemic lupus erythematosus:: Analysis of 600 patients from a single center [J].
Font, J ;
Cervera, R ;
Ramos-Casals, M ;
García-Carrasco, M ;
Sentís, J ;
Herrero, C ;
del Olmo, JA ;
Darnell, A ;
Ingelmo, M .
SEMINARS IN ARTHRITIS AND RHEUMATISM, 2004, 33 (04) :217-230
[19]   Genetic risk and longitudinal disease activity in systemic lupus erythematosus using targeted maximum likelihood estimation [J].
Gianfrancesco, M. A. ;
Balzer, L. ;
Taylor, K. E. ;
Trupin, L. ;
Nititham, J. ;
Seldin, M. F. ;
Singer, A. W. ;
Criswell, L. A. ;
Barcellos, L. F. .
GENES AND IMMUNITY, 2016, 17 (06) :358-362
[20]   Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus [J].
Han, Jian-Wen ;
Zheng, Hou-Feng ;
Cui, Yong ;
Sun, Liang-Dan ;
Ye, Dong-Qing ;
Hu, Zhi ;
Xu, Jin-Hua ;
Cai, Zhi-Ming ;
Huang, Wei ;
Zhao, Guo-Ping ;
Xie, Hong-Fu ;
Fang, Hong ;
Lu, Qian-Jin ;
Xu, Jian-Hua ;
Li, Xiang-Pei ;
Pan, Yun-Feng ;
Deng, Dan-Qi ;
Zeng, Fan-Qin ;
Ye, Zhi-Zhong ;
Zhang, Xiao-Yan ;
Wang, Qing-Wen ;
Hao, Fei ;
Ma, Li ;
Zuo, Xian-Bo ;
Zhou, Fu-Sheng ;
Du, Wen-Hui ;
Cheng, Yi-Lin ;
Yang, Jian-Qiang ;
Shen, Song-Ke ;
Li, Jian ;
Sheng, Yu-Jun ;
Zuo, Xiao-Xia ;
Zhu, Wei-Fang ;
Gao, Fei ;
Zhang, Pei-Lian ;
Guo, Qing ;
Li, Bo ;
Gao, Min ;
Xiao, Feng-Li ;
Quan, Cheng ;
Zhang, Chi ;
Zhang, Zheng ;
Zhu, Kun-Ju ;
Li, Yang ;
Hu, Da-Yan ;
Lu, Wen-Sheng ;
Huang, Jian-Lin ;
Liu, Sheng-Xiu ;
Li, Hui ;
Ren, Yun-Qing .
NATURE GENETICS, 2009, 41 (11) :1234-U98