Entanglement renormalization for weakly interacting fields

被引:25
作者
Cotler, Jordan S. [1 ]
Mozaffar, M. Reza Mohammadi [2 ]
Mollabashi, Ali [2 ]
Naseh, Ali [3 ]
机构
[1] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA
[2] Inst Res Fundamental Sci IPM, Sch Phys, POB 19395-5531, Tehran, Iran
[3] Inst Res Fundamental Sci IPM, Sch Particles & Accelerators, POB 19395-5531, Tehran, Iran
关键词
D O I
10.1103/PhysRevD.99.085005
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We adapt the techniques of entanglement renormalization tensor networks to weakly interacting quantum field theories in the continuum. A key tool is "quantum circuit perturbation theory," which enables us to systematically construct unitaries that map between wave functionals which are Gaussian with arbitrary perturbative corrections. As an application, we construct a local continuous multiscale entanglement renormalization ansatz (cMERA) circuit that maps an unentangled scale-invariant state to the ground state of phi(4) theory to one loop. Our local cMERA circuit corresponds exactly to one-loop Wilsonian renormalization group (RG) flow on the spatial momentum modes. In other words, we establish that perturbative Wilsonian RG on spatial momentum modes can be equivalently recast as a local cMERA circuit in phi(4) theory and argue that this correspondence holds more generally. Our analysis also suggests useful numerical ansatze for cMERA in the nonperturbative regime.
引用
收藏
页数:8
相关论文
共 31 条
[1]  
[Anonymous], ARXIV180602831
[2]  
[Anonymous], 2006, FLOW EQUATION APPROA
[3]   Anti-de Sitter Space from Optimization of Path Integrals in Conformal Field Theories [J].
Caputa, Pawel ;
Kundu, Nilay ;
Miyaji, Masamichi ;
Takayanagi, Tadashi ;
Watanabe, Kento .
PHYSICAL REVIEW LETTERS, 2017, 119 (07)
[4]   Toward a Definition of Complexity for Quantum Field Theory States [J].
Chapman, Shira ;
Heller, Michal P. ;
Marrochio, Hugo ;
Pastawski, Fernando .
PHYSICAL REVIEW LETTERS, 2018, 120 (12)
[5]  
Cotler J.S., ARXIV161202427
[6]   Tensor Network Renormalization [J].
Evenbly, G. ;
Vidal, G. .
PHYSICAL REVIEW LETTERS, 2015, 115 (18)
[7]  
Haegeman J., 2011, THESIS
[8]   Entanglement Renormalization for Quantum Fields in Real Space [J].
Haegeman, Jutho ;
Osborne, Tobias J. ;
Verschelde, Henri ;
Verstraete, Frank .
PHYSICAL REVIEW LETTERS, 2013, 110 (10)
[9]   Applying the Variational Principle to (1+1)-Dimensional Quantum Field Theories [J].
Haegeman, Jutho ;
Cirac, Ignacio ;
Osborne, Tobias J. ;
Verschelde, Henri ;
Verstraete, Frank .
PHYSICAL REVIEW LETTERS, 2010, 105 (25)
[10]  
Hatfield B., 1998, QUANTUM FIELD THEORY, V75