The duality between F-theory and the heterotic string in D=8 with two Wilson lines

被引:0
作者
Clingher, Adrian [1 ]
Hill, Thomas [2 ]
Malmendier, Andreas [2 ]
机构
[1] Univ Missouri, Dept Math, St Louis, MO 63121 USA
[2] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
关键词
F-theory; String duality; K3; surfaces; Jacobian elliptic fibrations; SURFACES; COMPACTIFICATIONS; CONFIGURATIONS; CLASSIFICATION; INSTANTONS; PENCILS; CURVES; FIBERS; FORMS;
D O I
10.1007/s11005-020-01323-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct non-geometric string compactifications by using the F-theory dual of the heterotic string compactified on a two-torus with two Wilson line parameters, together with a close connection between modular forms and the equations for certain K3 surfaces of Picard rank 16. We construct explicit Weierstrass models for all inequivalent Jacobian elliptic fibrations supported on this family of K3 surfaces and express their parameters in terms of modular forms generalizing Siegel modular forms. In this way, we find a complete list of all dual non-geometric compactifications obtained by the partial Higgsing of the heterotic string gauge algebra using two Wilson line parameters.
引用
收藏
页码:3081 / 3104
页数:24
相关论文
共 57 条
[11]   Six Line Configurations and String Dualities [J].
Clingher, A. ;
Malmendier, A. ;
Shaska, T. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 371 (01) :159-196
[12]  
Clingher A., 2019, ARXIV190809578MATHAG
[13]   Modular invariants for lattice polarized K3 surfaces [J].
Clingher, Adrian ;
Doran, Charles F. .
MICHIGAN MATHEMATICAL JOURNAL, 2007, 55 (02) :355-393
[14]   Note on a Geometric Isogeny of K3 Surfaces [J].
Clingher, Adrian ;
Doran, Charles F. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (16) :3657-3687
[15]   F-theory compactifications with multiple U(1)-factors: constructing elliptic fibrations with rational sections [J].
Cvetic, Mirjam ;
Klevers, Denis ;
Piragua, Hernan .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (06)
[16]  
DOLGACHEV I, 1983, ASTERISQUE, P251
[17]  
Dolgachev I.V, 1996, ALGEBRAIC GEOM, V4, P2599
[18]  
Douglas M.R, 2001, D BRANES CATEGORIES, P2818
[19]   The Kodaira dimension of the moduli of K3 surfaces [J].
Gritsenko, V. A. ;
Hulek, K. ;
Sankaran, G. K. .
INVENTIONES MATHEMATICAE, 2007, 169 (03) :519-567
[20]   Nongeometric F-theory-heterotic duality [J].
Gu, Jie ;
Jockers, Hans .
PHYSICAL REVIEW D, 2015, 91 (08)