GLOBAL STRONG SOLUTIONS OF THE COMPRESSIBLE NEMATIC LIQUID CRYSTAL FLOW WITH THE CYLINDER SYMMETRY

被引:6
作者
Tao, Qiang [1 ]
Gao, Jincheng [2 ]
Yao, Zheng-An [2 ]
机构
[1] Shenzhen Univ, Coll Math & Computat Sci, Shenzhen, Peoples R China
[2] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou, Guangdong, Peoples R China
基金
芬兰科学院;
关键词
Nematic liquid crystal flow; global strong solution; long time behavior; regularity; NAVIER-STOKES EQUATIONS; BOUNDARY-LAYERS; CYLINDRICAL SYMMETRY; HYDRODYNAMIC FLOW; EXISTENCE; FLUIDS; VISCOSITY;
D O I
10.4310/CMS.2015.v13.n8.a5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the well-posedness of the compressible nematic liquid crystal flow with the cylinder symmetry in R-3. By establishing a uniform pointwise positive lower and upper bounds of the density, we derive the global existence and uniqueness of strong solution and show the long time behavior of the global solution. Our results do not need the smallness of the initial data. Furthermore, a regularity result of global strong solution is given as well.
引用
收藏
页码:2065 / 2096
页数:32
相关论文
共 32 条
[1]  
[Anonymous], PREPRINT
[2]  
Antontsev S.N., 1990, Boundary value problems in mechanics of nonhomogeneous fluids
[3]   Global existence of the radially symmetric solutions of the Navier-Stokes equations for the isentropic compressible fluids [J].
Choe, HJ ;
Kim, HS .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2005, 28 (01) :1-28
[4]  
de Gennes PG., 1974, The Physics of Liquid Crystals
[5]   COMPRESSIBLE HYDRODYNAMIC FLOW OF LIQUID CRYSTALS IN 1-D [J].
Ding, Shijin ;
Lin, Junyu ;
Wang, Changyou ;
Wen, Huanyao .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (02) :539-563
[6]   WEAK SOLUTION TO COMPRESSIBLE HYDRODYNAMIC FLOW OF LIQUID CRYSTALS IN DIMENSION ONE [J].
Ding, Shijin ;
Wang, Changyou ;
Wen, Huanyao .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 15 (02) :357-371
[7]  
ERICKSEN JL, 1962, ARCH RATION MECH AN, V9, P371
[8]  
Feireisl E., 2004, Dynamics of Viscous Compressible Fluids
[9]   Vanishing shear viscosity in the equations of compressible fluids for the flows with the cylinder symmetry [J].
Frid, H ;
Shelukhin, V .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 31 (05) :1144-1156
[10]   Boundary layers for the Navier-Stokes equations of compressible fluids [J].
Frid, H ;
Shelukhin, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 208 (02) :309-330