An in situ growth strategy of NiCo-MOF nanosheets with more activity sites for asymmetric supercapacitors

被引:25
|
作者
Jia, Runping [1 ]
Zhao, Cheng [1 ]
Huang, Zhixiong [1 ]
Liu, Xin [1 ]
Wang, Dayang [1 ]
Hui, Zi [1 ]
Xu, Xiaowei [1 ]
机构
[1] Shanghai Inst Technol, Sch Mat Sci & Engn, Shanghai 201418, Peoples R China
基金
上海市自然科学基金;
关键词
Metal-organic frameworks; NiCo-LDHs; Binder-free; Electrodeposition; Asymmetric supercapacitor; METAL-ORGANIC FRAMEWORK; HYDROTHERMAL SYNTHESIS; DOPED CARBON; PERFORMANCE; HYDROXIDE; CO; ELECTRODES; LDH; COMPOSITES; ARRAYS;
D O I
10.1007/s11581-020-03727-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
NiCo layered double hydroxides (LDHs) for supercapacitors have been studied by virtue of the high specific capacitance theoretical values. However, less active sites limit the further increase of their specific capacitances. Metal-organic framework (MOF), as a promising material, has attracted intense attention with enormous specific area and adjustable structure. Herein, a practical strategy was designed to improve the active sites of the binder-free electrode by potentiostatic deposition and soaking NiCo-LDHs in 2-methylimidazole for in situ growth of MOF. This layered NiCo-MOF was obtained at room temperature which can retain more active sites to enhance capacitive properties. In particular, the prepared layered NiCo-MOF obtained a superior capacitance (1289 F g(-1)at 0.5 A g(-1)), along with a remarkable rate capability (767 F g(-1)at 20 A g(-1)). In addition, the as-prepared asymmetric supercapacitor exhibited a maximum specific energy of 57.8 Wh kg(-1)at 748.7 W kg(-1)(at a working potential of 1.5 V), and it retained 71.40% capacitance after 6000 cycles. All of these findings suggest that this work gives a practical way to synthesize NiCo-MOF nanosheets, and it exhibits excellent prospect in further energy field.
引用
收藏
页码:6309 / 6318
页数:10
相关论文
共 50 条
  • [21] In situ growth of an Fe-doped NiCo-MOF electrocatalyst from layered double hydroxide effectively enhances electrocatalytic oxygen evolution performance
    Sun, Tingting
    Lin, Shuangyan
    Xu, Zhikun
    Li, Lin
    CRYSTENGCOMM, 2021, 23 (43) : 7650 - 7657
  • [22] Hydrothermal assisted in situ growth of CoSe onto graphene nanosheets as a nanohybrid positive electrode for asymmetric supercapacitors
    Kirubasankar, Balakrishnan
    Murugadoss, Vignesh
    Angaiah, Subramania
    RSC ADVANCES, 2017, 7 (10) : 5853 - 5862
  • [23] MOF derived NiCo2O4 nanosheets for high performance asymmetric supercapacitor
    Salunkhe, Amruta. D.
    Pawar, P. S.
    Pagare, P. K.
    Kadam, A. N.
    Katkar, P. K.
    Torane, A. P.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 939
  • [24] Preparation of high-performance asymmetric supercapacitors based on NiCo2S4 nanospheres and CuO-MOF nanosheets on carbon fibers
    Liu, Baopeng
    Zhang, Jun
    Xu, Jiawei
    Pan, Yanjie
    Huang, Yanshan
    Han, Sheng
    Li, Yuanting
    FUEL, 2024, 356
  • [25] Bimetallic MOF Nanosheets Decorated on Electrospun Nanofibers for High-Performance Asymmetric Supercapacitors
    Tian, Di
    Song, Na
    Zhong, Mengxiao
    Lu, Xiaofeng
    Wang, Ce
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (01) : 1280 - 1291
  • [26] In situ growth of NiCo-MOF and the derived NiCo2O4/NiCo2O4/Ni foam composite with a wire-penetrated-cage hierarchical architecture for an efficient oxygen evolution reaction
    Liu, Xianchun
    Xing, Yan
    DALTON TRANSACTIONS, 2023, 52 (48) : 18295 - 18301
  • [27] Confined growth of NiCo2S4 nanosheets on carbon flakes derived from eggplant with enhanced performance for asymmetric supercapacitors
    Liu, Yanping
    Li, Zheling
    Yao, Lei
    Chen, Sanming
    Zhang, Peixin
    Deng, Libo
    CHEMICAL ENGINEERING JOURNAL, 2019, 366 : 550 - 559
  • [28] High Energy Density Asymmetric Supercapacitors From Mesoporous NiCo2S4 Nanosheets
    Wu, Zhibin
    Pu, Xuli
    Ji, Xiaobo
    Zhu, Yirong
    Jing, Mingjun
    Chen, Qiyuan
    Jiao, Feipeng
    ELECTROCHIMICA ACTA, 2015, 174 : 238 - 245
  • [29] Hybrid MnO2@NiCo2O4 nanosheets for high performance asymmetric supercapacitors
    Zhao, Depeng
    Wu, Xiang
    Guo, Chuanfei
    INORGANIC CHEMISTRY FRONTIERS, 2018, 5 (06): : 1378 - 1385
  • [30] In-situ growth of bimetallic sulfide NiCo2S4 nanowire on carbon cloth for asymmetric flexible supercapacitors
    Liang, Xiaoyuan
    He, Hang
    Yang, Xijia
    Lu, Wei
    Wang, Liying
    Li, Xuesong
    JOURNAL OF ENERGY STORAGE, 2021, 42