Programmable Fractal Nanostructured Interfaces for Specific Recognition and Electrochemical Release of Cancer Cells

被引:193
作者
Zhang, Pengchao [1 ,2 ]
Chen, Li [1 ,2 ]
Xu, Tailin [1 ]
Liu, Hongliang [1 ]
Liu, Xueli [1 ,2 ]
Meng, Jingxin [1 ]
Yang, Gao [1 ,2 ]
Jiang, Lei [1 ]
Wang, Shutao [1 ]
机构
[1] Chinese Acad Sci, Inst Chem, Key Lab Organ Solids, Beijing Natl Lab Mol Sci BNLMS, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
fractal nanostructure; cancer cell recognition; cell release; electrochemistry; CIRCULATING TUMOR-CELLS; SELF-ASSEMBLED MONOLAYERS; EFFICIENT CAPTURE; GOLD CLUSTERS; T-LYMPHOCYTES; SURFACE; DESORPTION; BLOOD; NANOPARTICLES; ARCHITECTURE;
D O I
10.1002/adma.201300888
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Topographic recognition of cancer cells is triggered by fractal gold nanostructures (FAuNSs), leading to dramatically enhanced recognition capability and efficient release of cancer cells with little damage. The unique characteristic of FAuNSs is the similar fractal dimension of their surface and that of a cancer cell. The design of fractal nanostructures will open up opportunities for functional design of bio-interfaces for highly efficient recognition and release of disease-related rare cells, which will improve detection in a clinical environment. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:3566 / 3570
页数:5
相关论文
共 47 条
[11]   Are neurons multifractals? [J].
Fernández, E ;
Bolea, JA ;
Ortega, G ;
Louis, E .
JOURNAL OF NEUROSCIENCE METHODS, 1999, 89 (02) :151-157
[12]   FRACTAL APPROACH TO TWO-DIMENSIONAL AND 3-DIMENSIONAL SURFACE-ROUGHNESS [J].
GAGNEPAIN, JJ ;
ROQUESCARMES, C .
WEAR, 1986, 109 (1-4) :119-126
[13]   An anti-CD20-IL-2 immunocytokine is highly efficacious in a SCID mouse model of established human B lymphoma [J].
Gillies, SD ;
Lan, Y ;
Williams, S ;
Carr, F ;
Forman, S ;
Raubitschek, A ;
Lo, KM .
BLOOD, 2005, 105 (10) :3972-3978
[14]   Cancer cell targeting using multiple aptamers conjugated on nanorods [J].
Huang, Yu-Fen ;
Chang, Huan-Tsung ;
Tan, Weihong .
ANALYTICAL CHEMISTRY, 2008, 80 (03) :567-572
[15]   Electrochemical desorption of self-assembled monolayers for engineering cellular tissues [J].
Inaba, Rina ;
Khademhosseini, Ali ;
Suzuki, Hiroaki ;
Fukuda, Junji .
BIOMATERIALS, 2009, 30 (21) :3573-3579
[16]   Electrochemical desorption of self-assembled monolayers noninvasively releases patterned cells from geometrical confinements [J].
Jiang, XY ;
Ferrigno, R ;
Mrksich, M ;
Whitesides, GM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (09) :2366-2367
[17]   A quartz nanopillar hemocytometer for high-yield separation and counting of CD4+ T lymphocytes [J].
Kim, Dong-Joo ;
Seol, Jin-Kyeong ;
Wu, Yu ;
Ji, Seungmuk ;
Kim, Gil-Sung ;
Hyung, Jung-Hwan ;
Lee, Seung-Yong ;
Lim, Hyuneui ;
Fan, Rong ;
Lee, Sang-Kwon .
NANOSCALE, 2012, 4 (07) :2500-2507
[18]   Novel Streptavidin-Functionalized Silicon Nanowire Arrays for CD4+ T Lymphocyte Separation [J].
Kim, Sung Tae ;
Kim, Dong-Joo ;
Kim, Tae-Jin ;
Seo, Deok-Won ;
Kim, Tae-Hong ;
Lee, Seung-Yong ;
Kim, Kwanghee ;
Lee, Kyung-Mi ;
Lee, Sang-Kwon .
NANO LETTERS, 2010, 10 (08) :2877-2883
[19]   Interaction of Gold Nanoparticles with Common Human Blood Proteins [J].
Lacerda, Silvia H. De Paoli ;
Park, Jung Jin ;
Meuse, Curt ;
Pristinski, Denis ;
Becker, Matthew L. ;
Karim, Alamgir ;
Douglas, Jack F. .
ACS NANO, 2010, 4 (01) :365-379
[20]   Simple, three-dimensional microfabrication of electrodeposited structures [J].
LaVan, DA ;
George, PM ;
Langer, R .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (11) :1262-1265