Cubic algebra and averaged Hamiltonian for the resonance 3: (-1) Penning-ioffe trap

被引:3
|
作者
Blagodyreva, O. [1 ]
Karasev, M. [1 ]
Novikova, E. [1 ]
机构
[1] HSE, Moscow Inst Elect & Math, Moscow, Russia
关键词
CHARGED-PARTICLE;
D O I
10.1134/S1061920812040048
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For the 3: (-1) resonance Penning trap, we describe the algebra of symmetries which turns out to be a non-Lie algebra with cubic commutation relations. The irreducible representations and coherent states of this algebra are constructed explicitly. The perturbing inhomogeneous magnetic field of Ioffe type, after double quantum averaging, generates an effective Hamiltonian of the trap. In the irreducible representation, this Hamiltonian becomes a second-order ordinary differential operator of the Heun type.
引用
收藏
页码:440 / 448
页数:9
相关论文
共 33 条
  • [1] Cubic algebra and averaged Hamiltonian for the resonance 3: (−1) Penning-ioffe trap
    O. Blagodyreva
    M. Karasev
    E. Novikova
    Russian Journal of Mathematical Physics, 2012, 19 : 440 - 448
  • [2] Antihydrogen production within a Penning-Ioffe trap
    Gabrielse, G.
    Larochelle, P.
    Le Sage, D.
    Levitt, B.
    Kolthammer, W. S.
    McConnell, R.
    Richerme, P.
    Wrubel, J.
    Speck, A.
    George, M. C.
    Grzonka, D.
    Oelert, W.
    Sefzick, T.
    Zhang, Z.
    Carew, A.
    Comeau, D.
    Hessels, E. A.
    Storry, C. H.
    Weel, M.
    Walz, J.
    PHYSICAL REVIEW LETTERS, 2008, 100 (11)
  • [3] Antiproton confinement in a penning-ioffe trap for antihydrogen
    Gabrielse, G.
    Larochelle, P.
    Le Sage, D.
    Levitt, B.
    Kolthammer, W. S.
    Kuljanishvili, I.
    McConnell, R.
    Wrubel, J.
    Esser, F. M.
    Glueckler, H.
    Grzonka, D.
    Hansen, G.
    Martin, S.
    Oelert, W.
    Schillings, J.
    Schmitt, M.
    Sefzick, T.
    Soltner, H.
    Zhang, Z.
    Comeau, D.
    George, M. C.
    Hessels, E. A.
    Storry, C. H.
    Weel, M.
    Speck, A.
    Nillius, F.
    Walz, J.
    Haensch, T. W.
    PHYSICAL REVIEW LETTERS, 2007, 98 (11)
  • [4] Stability of a charged particle in a combined Penning-Ioffe trap
    Squires, TM
    Yesley, P
    Gabrielse, G
    PHYSICAL REVIEW LETTERS, 2001, 86 (23) : 5266 - 5269
  • [5] Eigenstates of the quantum Penning-Ioffe nanotrap at resonance
    Karasev, M. V.
    Novikova, E. M.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2014, 179 (03) : 729 - 746
  • [6] Eigenstates of the quantum Penning-Ioffe nanotrap at resonance
    M. V. Karasev
    E. M. Novikova
    Theoretical and Mathematical Physics, 2014, 179 : 729 - 746
  • [7] Two-symmetry Penning-Ioffe trap for antihydrogen cooling and spectroscopy
    Tardiff, E.
    Fan, X.
    Gabrielse, G.
    Grzonka, D.
    Hamley, C.
    Hessels, E. A.
    Jones, N.
    Khatri, G.
    Kolthammer, W. S.
    Zambrano, D. Martinez
    Meisenhelder, C.
    Morrison, T.
    Nottet, E.
    Novitski, E.
    Storry, C. H.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2020, 977
  • [8] Planar Penning trap with combined resonance and top dynamics on quadratic algebra
    M. V. Karasev
    E. M. Novikova
    Russian Journal of Mathematical Physics, 2015, 22 : 463 - 468
  • [9] Planar Penning trap with combined resonance and top dynamics on quadratic algebra
    Karasev, M. V.
    Novikova, E. M.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2015, 22 (04) : 463 - 468
  • [10] On detuned 1:1:3 Hamiltonian resonance with cases of symmetric cubic and quartic potentials
    Mazrooei-Sebdani, Reza
    Hakimi, Elham
    CHAOS, 2020, 30 (09)