Comparing the performance of Nd3+-doped LiBaPO4 phosphors as optical temperature sensors within the first biological window exploiting luminescence intensity ratio and bandwidth methods

被引:30
作者
Laia, Andre Scheidegger [1 ,2 ,3 ]
Hora, Daniela A. [4 ]
Rezende, Marcos V. dos S. [4 ]
Xing, Yutao [5 ]
Rodrigues Jr, Jose Joatan [1 ,2 ]
Maciel, Glauco S. [5 ]
Alencar, Marcio A. R. C. [1 ,2 ]
机构
[1] Univ Fed Sergipe UFS, Dept Fis, BR-49100000 Sao Cristovao, SE, Brazil
[2] Univ Fed Sergipe UFS, Lab Corrosao & Nanotecnol LCNT, BR-49100000 Sao Cristovao, SE, Brazil
[3] Univ Estado Para, Dept Ciencias Nat, Grp Pesquisa Fis & Ensino Fis GPFEF, BR-68502100 Maraba, PA, Brazil
[4] Univ Fed Sergipe, Grp Nanomat Func GNF, Dept Fis, BR-49100000 Sao Cristovao, SE, Brazil
[5] Univ Fed Fluminense, Inst Fis, BR-24210346 Niteroi, RJ, Brazil
关键词
Optical thermometry; Fluorescence intensity ratio; Bandwidth; Biological window I; ENERGY-LEVELS; QUANTUM DOTS; LINE SHIFT; NANOPARTICLES; ND3+; SENSITIVITY; EMISSION; NANOCRYSTALS; ND-3+; IONS;
D O I
10.1016/j.jlumin.2020.117524
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Neodymium doped LiBaPO4 phosphors were studied as luminescent thermometers for operation within the first biological window (BW I). Thermal sensing by luminescence intensity ratio (LIR) and bandwidth (FWHM and Delta 2 lambda(eff)) methods were used and their performances were compared. In addition, a new sensing method is proposed based on the width of the emission line, measured at 90% of the maximum intensity (Delta lambda(90%)). The obtained results demonstrate that this material can have different sensitivity values, depending on the used methodology, and exhibits one of the highest sensitivity (0.55% K-1) reported for materials doped with neodymium, operating within the BW I, based on a single emission band ((F3/2 -> I9/2)-F-4-I-4).
引用
收藏
页数:9
相关论文
共 60 条
[1]  
Allison WT, 2012, CRIT MOM AMER HIST, P1
[2]   SIMULATION OF THE ENERGY-LEVEL SCHEME OF ND-3+ AND EU-3+ IONS IN RARE-EARTH ORTHOVANADATES AND PHOSPHATES [J].
ANTICFIDANCEV, E ;
HOLSA, J ;
LEMAITREBLAISE, M ;
PORCHER, P .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1991, 3 (35) :6829-6843
[3]   Micro/Nanoscale Thermometry for Cellular Thermal Sensing [J].
Bai, Tingting ;
Gu, Ning .
SMALL, 2016, 12 (34) :4590-4610
[4]   Boosting the sensitivity of Nd3+-based luminescent nanothermometers [J].
Balabhadra, Sangeetha ;
Debasu, Mengistie L. ;
Brites, Carlos D. S. ;
Nunes, Luis A. O. ;
Malta, Oscar L. ;
Rocha, Joao ;
Bettinelli, Marco ;
Carlos, Luis D. .
NANOSCALE, 2015, 7 (41) :17261-17267
[5]   Nd:YAG Near-Infrared Luminescent Nanothermometers [J].
Benayas, Antonio ;
del Rosal, Blanca ;
Perez-Delgado, Alberto ;
Santacruz-Gomez, Karla ;
Jaque, Daniel ;
Alonso Hirata, Gustavo ;
Vetrone, Fiorenzo .
ADVANCED OPTICAL MATERIALS, 2015, 3 (05) :687-694
[6]   Multiwavelength Fluorescence Intensity Ratio Nanothermometry: High Sensitivity over a Broad Temperature Range [J].
Brandao-Silva, Antonio C. ;
Gomes, Maria A. ;
Macedo, Zelia S. ;
Avila, Jhon F. M. ;
Rodrigues, Jose J., Jr. ;
Alencar, Marcio A. R. C. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (35) :20459-20468
[7]   Temperature dependency of the emission properties from positioned In(Ga)As/GaAs quantum dots [J].
Braun, T. ;
Schneider, C. ;
Maier, S. ;
Igusa, R. ;
Iwamoto, S. ;
Forchel, A. ;
Hoefling, S. ;
Arakawa, Y. ;
Kamp, M. .
AIP ADVANCES, 2014, 4 (09)
[8]  
Brites CDS, 2016, HBK PHYS CHEM RARE, V49, P339, DOI 10.1016/bs.hpcre.2016.03.005
[9]   Lanthanide-Based Thermometers: At the Cutting-Edge of Luminescence Thermometry [J].
Brites, Carlos D. S. ;
Balabhadra, Sangeetha ;
Carlos, Luis D. .
ADVANCED OPTICAL MATERIALS, 2019, 7 (05)
[10]   In Vivo Luminescence Nanothermometry: from Materials to Applications [J].
del Rosal, Blanca ;
Ximendes, Erving ;
Rocha, Ueslen ;
Jaque, Daniel .
ADVANCED OPTICAL MATERIALS, 2017, 5 (01)