On some geometric invariants associated to the space of flat connections on an open space

被引:2
作者
Biswas, I
Guruprasad, K
机构
[1] SCH MATH,BOMBAY 400005,MAHARASHTRA,INDIA
[2] INDIAN INST SCI,DEPT MATH,BANGALORE 560012,KARNATAKA,INDIA
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 1996年 / 39卷 / 02期
关键词
marked surface; connections; holonomy; parabolic moduli space; symplectic structure; Chem-Simons forms and Coulomb connection;
D O I
10.4153/CMB-1996-021-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A geometric invariant is associated to the parabolic moduli space on a marked surface and is related to the symplectic structure of the moduli space.
引用
收藏
页码:169 / 177
页数:9
相关论文
共 9 条
[1]   DETERMINANTS OF PARABOLIC BUNDLES ON RIEMANN SURFACES [J].
BISWAS, I ;
RAGHAVENDRA, N .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1993, 103 (01) :41-71
[2]  
Biswas I., 1993, INT J MATH, V4, P535
[3]   CHARACTERISTIC FORMS AND GEOMETRIC INVARIANTS [J].
CHERN, SS ;
SIMONS, J .
ANNALS OF MATHEMATICS, 1974, 99 (01) :48-69
[4]  
DASKALOPOULOS G, 1992, GEOMETRIC QUANTIZATI
[5]  
FREED DS, MSRI PUBLICATION, V1
[6]   THE SYMPLECTIC NATURE OF FUNDAMENTAL-GROUPS OF SURFACES [J].
GOLDMAN, WM .
ADVANCES IN MATHEMATICS, 1984, 54 (02) :200-225
[7]  
GURUPRASAD K, 1990, COMPOS MATH, V73, P199
[8]   FLAT CONNECTIONS, GEOMETRIC INVARIANTS AND THE SYMPLECTIC NATURE OF THE FUNDAMENTAL GROUP OF SURFACES [J].
GURUPRASAD, K .
PACIFIC JOURNAL OF MATHEMATICS, 1994, 162 (01) :45-55
[9]   GEOMETRY OF SU(2) GAUGE FIELDS [J].
NARASIMHAN, MS ;
RAMADAS, TR .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 67 (02) :121-136