A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations

被引:80
作者
Kim, H [1 ]
机构
[1] Korea Inst Adv Study, Sch Math, Seoul 130722, South Korea
关键词
blow-up criterion; nonhomogeneous incompressible Navier-Stokes equations;
D O I
10.1137/S0036141004442197
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (p, u) be a strong or smooth solution of the nonhomogeneous incompressible Navier-Stokes equations in (0, T*) x Omega, where T* is a finite positive time and Omega is a bounded domain in R-3 with smooth boundary or the whole space R-3. We show that if (p, u) blows up at T*, then integral(T*)(0) vertical bar u(t)vertical bar(s)(LTW)(Omega dt = infinity for any (r, s) with 2/s + 3/r = 1 and 3 < r <= infinity. As immediate applications, we obtain a regularity theorem and a global existence theorem for strong solutions.
引用
收藏
页码:1417 / 1434
页数:18
相关论文
共 30 条
[1]  
ANTONTSEV SA, 1973, LECT NOTES NOVOSIBIR
[2]  
Berselli L.C., 2002, DIFFER INTEGRAL EQU, V15, P1129
[3]  
CHAE D, 1999, ELECT J DIFFERENTIAL
[4]   Unique solvability of the initial boundary value problems for compressible viscous fluids [J].
Cho, Y ;
Choe, HJ ;
Kim, H .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (02) :243-275
[5]   Unique solvability for the density-dependent Navier-Stokes equations [J].
Cho, YG ;
Kim, HS .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 59 (04) :465-489
[6]   Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids [J].
Choe, HJ ;
Kim, H .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (5-6) :1183-1201
[7]  
DAVEIGA HB, 1995, ANN MATH, V16, P407
[8]   Uniqueness for some Leray-Hopf solutions to the Navier-Stokes equations [J].
Dubois, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 189 (01) :99-147
[9]   INITIAL VALUE-PROBLEM FOR NAVIER-STOKES EQUATIONS WITH DATA IN LP [J].
FABES, EB ;
JONES, BF ;
RIVIERE, NM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1972, 45 (03) :222-&
[10]  
FERNANDEZCARA E, 1992, COMMUN PART DIFF EQ, V17, P1253