A numerical method to find positive solution of semilinear elliptic Dirichlet problems

被引:4
作者
Afrouzi, GA [1 ]
Khademloo, S [1 ]
机构
[1] Mazandaran Univ, Fac Basic Sci, Dept Math, Babol Sar 474161467, Iran
关键词
elliptic boundary value problems; indefinite weight function; finite difference method;
D O I
10.1016/j.amc.2005.05.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we present a numerical approach for finding positive solutions for the elliptic problems of the type -Delta u =lambda f(x)g(u) for x is an element of Omega, with Dirichlet boundary condition. We will show that in which range of lambda this problem achieves a numerical solution and what is the behavior of the branch of this solutions. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:1408 / 1415
页数:8
相关论文
共 6 条
[1]   On principal eigenvalues for boundary value problems with indefinite weight and Robin boundary conditions [J].
Afrouzi, GA ;
Brown, KJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (01) :125-130
[2]   On the existence and multiplicity of positive solutions for some indefinite nonlinear eigenvalue problem [J].
Delgado, M ;
Suárez, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (06) :1721-1728
[3]   SELECTION-MIGRATION MODEL IN POPULATION GENETICS [J].
FLEMING, WH .
JOURNAL OF MATHEMATICAL BIOLOGY, 1975, 2 (03) :219-233
[4]   The existence of positive solutions for a class of indefinite weight semilinear elliptic boundary value problems [J].
Ko, B ;
Brown, K .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 39 (05) :587-597
[5]  
PANOV DJ, 1951, FORMULAS NUMERICAL S
[6]  
Petrovsky I. G., 1991, Lectures on Partial Differential Equations