Delivering the CRISPR/Cas9 system for engineering gene therapies: Recent cargo and delivery approaches for clinical translation

被引:19
作者
Foley, Ruth A. [1 ,2 ]
Sims, Ruby A. [1 ,3 ]
Duggan, Emily C. [1 ]
Olmedo, Jessica K. [1 ]
Ma, Rachel [1 ]
Jonas, Steven J. [1 ,3 ,4 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Dept Pediat, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA USA
[3] Univ Calif Los Angeles, Calif Nanosyst Inst, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Eli & Edythe Broad Ctr Regenerat Med & Stem Cell R, Los Angeles, CA 90095 USA
关键词
gene therapy; CRISPR; Cas9; genome editing; intracellular delivery; nano carriers; HUMAN HEMATOPOIETIC STEM; IN-VIVO; LIPID NANOPARTICLES; CAS9; RIBONUCLEOPROTEIN; INTRACELLULAR DELIVERY; GENOMIC DNA; EFFICIENT; RNA; CRISPR-CAS9; CELLS;
D O I
10.3389/fbioe.2022.973326
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Clustered Regularly Interspaced Short Palindromic Repeats associated protein 9 (CRISPR/Cas9) has transformed our ability to edit the human genome selectively. This technology has quickly become the most standardized and reproducible gene editing tool available. Catalyzing rapid advances in biomedical research and genetic engineering, the CRISPR/Cas9 system offers great potential to provide diagnostic and therapeutic options for the prevention and treatment of currently incurable single-gene and more complex human diseases. However, significant barriers to the clinical application of CRISPR/Cas9 remain. While in vitro, ex vivo, and in vivo gene editing has been demonstrated extensively in a laboratory setting, the translation to clinical studies is currently limited by shortfalls in the precision, scalability, and efficiency of delivering CRISPR/Cas9-associated reagents to their intended therapeutic targets. To overcome these challenges, recent advancements manipulate both the delivery cargo and vehicles used to transport CRISPR/Cas9 reagents. With the choice of cargo informing the delivery vehicle, both must be optimized for precision and efficiency. This review aims to summarize current bioengineering approaches to applying CRISPR/Cas9 gene editing tools towards the development of emerging cellular therapeutics, focusing on its two main engineerable components: the delivery vehicle and the gene editing cargo it carries. The contemporary barriers to biomedical applications are discussed within the context of key considerations to be made in the optimization of CRISPR/Cas9 for widespread clinical translation.
引用
收藏
页数:24
相关论文
共 162 条
[31]   High-throughput nuclear delivery and rapid expression of DNA via mechanical and electrical cell-membrane disruption [J].
Ding, Xiaoyun ;
Stewart, Martin P. ;
Sharei, Armon ;
Weaver, James C. ;
Langer, Robert S. ;
Jensen, Klavs F. .
NATURE BIOMEDICAL ENGINEERING, 2017, 1 (03)
[32]   Cell engineering with microfluidic squeezing preserves functionality of primary immune cells in vivo (Publication with Expression of Concern) [J].
DiTommaso, Tia ;
Cole, Julie M. ;
Cassereau, Luke ;
Bugge, Joshua A. ;
Hanson, Jacquelyn L. Sikora ;
Bridgen, Devin T. ;
Stokes, Brittany D. ;
Loughhead, Scott M. ;
Beutel, Bruce A. ;
Gilbert, Jonathan B. ;
Nussbaum, Kathrin ;
Sorrentino, Antonio ;
Toggweiler, Janine ;
Schmidt, Tobias ;
Gyuelveszi, Gabor ;
Bernstein, Howard ;
Sharei, Armon .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (46) :E10907-E10914
[33]   Massively-Parallelized, Deterministic Mechanoporation for Intracellular Delivery [J].
Dixitt, Harish G. ;
Starr, Renate ;
Dundon, Morgan L. ;
Pairs, Pranee I. ;
Yang, Xin ;
Zhang, Yanyan ;
Nampe, Daniel ;
Ballas, Christopher B. ;
Tsutsui, Hideaki ;
Forman, Stephen J. ;
Brown, Christine E. ;
Rao, Masaru P. .
NANO LETTERS, 2020, 20 (02) :860-867
[34]   The Performance of Minicircle DNA Versus Parental Plasmid in p53 Gene Delivery Into HPV-18-Infected Cervical Cancer Cells [J].
Eusebio, Dalinda ;
Almeida, Ana Margarida ;
Alves, Joel Marques ;
Maia, Claudio Jorge ;
Queiroz, Joao Antonio ;
Sousa, Fani ;
Sousa, Angela .
NUCLEIC ACID THERAPEUTICS, 2021, 31 (01) :82-91
[35]   A Single Administration of CRISPR/Cas9 Lipid Nanoparticles Achieves Robust and Persistent In Vivo Genome Editing [J].
Finn, Jonathan D. ;
Smith, Amy Rhoden ;
Patel, Mihir C. ;
Shaw, Lucinda ;
Youniss, Madeleine R. ;
van Heteren, Jane ;
Dirstine, Tanner ;
Ciullo, Corey ;
Lescarbeau, Reynald ;
Seitzer, Jessica ;
Shah, Ruchi R. ;
Shah, Aalok ;
Ling, Dandan ;
Growe, Jacqueline ;
Pink, Melissa ;
Rohde, Ellen ;
Wood, Kristy M. ;
Salomon, William E. ;
Harrington, William F. ;
Dombrowski, Christian ;
Strapps, Walter R. ;
Chang, Yong ;
Morrissey, David V. .
CELL REPORTS, 2018, 22 (09) :2227-2235
[36]   Gene engineered mesenchymal stem cells: greater transgene expression and efficacy with minicircle vs. plasmid DNA vectors in a mouse model of acute lung injury [J].
Florian, Maria ;
Wang, Jia-Pey ;
Deng, Yupu ;
Souza-Moreira, Luciana ;
Stewart, Duncan J. ;
Mei, Shirley H. J. .
STEM CELL RESEARCH & THERAPY, 2021, 12 (01)
[37]   Systemic biodistribution and hepatocyte-specific gene editing with CRISPR/Cas9 using hyaluronic acid-based nanoparticles [J].
Francis, Christopher ;
Wroblewska, Liliana ;
Pegman, Pamela ;
Amiji, Mansoor .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2022, 40
[38]   CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia [J].
Frangoul, H. ;
Altshuler, D. ;
Cappellini, M. D. ;
Chen, Y-S ;
Domm, J. ;
Eustace, B. K. ;
Foell, J. ;
de la Fuente, J. ;
Grupp, S. ;
Handgretinger, R. ;
Ho, T. W. ;
Kattamis, A. ;
Kernytsky, A. ;
Lekstrom-Himes, J. ;
Li, A. M. ;
Locatelli, F. ;
Mapara, M. Y. ;
de Montalembert, M. ;
Rondelli, D. ;
Sharma, A. ;
Sheth, S. ;
Soni, S. ;
Steinberg, M. H. ;
Wall, D. ;
Yen, A. ;
Corbacioglu, S. .
NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (03) :252-260
[39]   Programmable base editing of A.T to G.C in genomic DNA without DNA cleavage [J].
Gaudelli, Nicole M. ;
Komor, Alexis C. ;
Rees, Holly A. ;
Packer, Michael S. ;
Badran, Ahmed H. ;
Bryson, David I. ;
Liu, David R. .
NATURE, 2017, 551 (7681) :464-+
[40]   Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research [J].
Gehl, J .
ACTA PHYSIOLOGICA SCANDINAVICA, 2003, 177 (04) :437-447