A notion of stability for k-means clustering

被引:1
作者
Le Gouic, T. [1 ,2 ]
Paris, Q. [2 ,3 ]
机构
[1] Aix Marseille Univ, CNRS, Cent Marseille, I2M, Marseille, France
[2] Natl Res Univ, Higher Sch Econ, Moscow, Russia
[3] Int Lab Stochast Algorithms & High Dimens Inferen, Moscow, Russia
关键词
Clustering; k-means; stability; TRAINING DISTORTION; QUANTIZATION; CONVERGENCE; THEOREM; BOUNDS;
D O I
10.1214/18-EJS1500
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we define and study a new notion of stability for the k-means clustering scheme building upon the field of quantization of a probability measure. We connect this definition of stability to a geometric feature of the underlying distribution of the data, named absolute margin condition, inspired by recent works on the subject.
引用
收藏
页码:4239 / 4263
页数:25
相关论文
共 23 条
[1]   CONVERGENCE OF VECTOR QUANTIZERS WITH APPLICATIONS TO OPTIMAL QUANTIZATION [J].
ABAYA, EF ;
WISE, GL .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1984, 44 (01) :183-189
[2]   Improved minimax bounds on the test and training distortion of empirically designed vector quantizers [J].
Antos, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (11) :4022-4032
[3]   Individual convergence rates in empirical vector quantizer design [J].
Antos, A ;
Györfi, L ;
György, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (11) :4013-4022
[4]   The minimax distortion redundancy in empirical quantizer design [J].
Bartlett, PL ;
Linder, T ;
Lugosi, G .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (05) :1802-1813
[5]   Stability of k-means clustering [J].
Ben-David, Shai ;
Pal, Ddvid ;
Simon, Hans Ulrich .
LEARNING THEORY, PROCEEDINGS, 2007, 4539 :20-+
[6]   A sober look at clustering stability [J].
Ben-David, Shai ;
von Luxburg, Ulrike ;
Pal, David .
LEARNING THEORY, PROCEEDINGS, 2006, 4005 :5-19
[7]   On the performance of clustering in Hilbert spaces [J].
Biau, Gerard ;
Devroye, Luc ;
Lugosi, Gabor .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (02) :781-790
[8]   On Holder fields clustering [J].
Cadre, Benoit ;
Paris, Quentin .
TEST, 2012, 21 (02) :301-316
[9]  
Chou PA, 1994, IEEE T INFORM THEORY, P457
[10]  
GRAF S., 2000, FDN QUANTIZATION PRO