Graded embeddings of finite dimensional simple graded algebras

被引:5
作者
David, Ofir [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
Polynomial identities; Graded identities; Graded simple algebras; Graded embedding; IDENTITIES;
D O I
10.1016/j.jalgebra.2012.06.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A, B be finite dimensional G-graded algebras over an algebraically closed field K with char(K) = 0, where G is an abelian group, and let Id(G)(A) be the set of graded identities of A (resp. Id(G)(B)). We show that if A, B are G-simple then there is a graded embedding phi : A -> B if and only if Id(G)(B) subset of Id(G)(A). We also give a weaker generalization for the case where A is G-semisimple and B is arbitrary. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:120 / 141
页数:22
相关论文
共 11 条
[1]  
Aljadeff E., T AM MATH S IN PRESS
[2]   Graded polynomial identities and exponential growth [J].
Aljadeff, Eli ;
Giambruno, Antonio ;
La Mattina, Daniela .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 650 :83-100
[3]   GRADED IDENTITIES OF MATRIX ALGEBRAS AND THE UNIVERSAL GRADED ALGEBRA [J].
Aljadeff, Eli ;
Haile, Darrell ;
Natapov, Michael .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (06) :3125-3147
[4]   MINIMAL IDENTITIES FOR ALGEBRAS [J].
AMITSUR, AS ;
LEVITZKI, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 1 (04) :449-463
[5]   Finite-dimensional simple graded algebras [J].
Bahturin, Yu. A. ;
Zaicev, M. V. ;
Sehgal, S. K. .
SBORNIK MATHEMATICS, 2008, 199 (7-8) :965-983
[6]   CLASSIFICATION-THEOREMS FOR VERBALLY SEMIPRIME ALGEBRAS [J].
BERELE, A .
COMMUNICATIONS IN ALGEBRA, 1993, 21 (05) :1505-1512
[7]   GROUP-GRADED RINGS, SMASH PRODUCTS, AND GROUP-ACTIONS [J].
COHEN, M ;
MONTGOMERY, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (01) :237-258
[8]  
Herstein I. N., 2005, NONCOMMUTATIVE RINGS
[9]  
KEMER AR, 1984, MATH USSR IZV+, V48, P359
[10]   Identities and isomorphisms of graded simple algebras [J].
Koshlukov, Plamen ;
Zaicev, Mikhail .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (12) :3141-3148