Overexpression of the PtSOS2 gene improves tolerance to salt stress in transgenic poplar plants

被引:53
|
作者
Yang, Yang [1 ]
Tang, Ren-Jie [1 ]
Jiang, Chun-Mei [1 ]
Li, Bei [1 ]
Kang, Tao [1 ]
Liu, Hua [1 ]
Zhao, Nan [2 ]
Ma, Xu-Jun [2 ]
Yang, Lei [3 ]
Chen, Shao-Liang [2 ]
Zhang, Hong-Xia [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Plant Physiol & Ecol, Natl Key Lab Plant Mol Genet, Shanghai, Peoples R China
[2] Beijing Forestry Univ, Coll Biol Sci & Technol, Beijing, Peoples R China
[3] Nanjing Univ, Coll Life Sci, Nanjing 210008, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
poplar; PtSOS2; salt tolerance; transgenic plants; NA+/H+ ANTIPORTER SOS1; PROTEIN-KINASE SOS2; PLASMA-MEMBRANE; ION HOMEOSTASIS; CALCIUM SENSOR; ARABIDOPSIS-THALIANA; SALINITY TOLERANCE; K+/NA+ HOMEOSTASIS; OXIDATIVE STRESS; REVEALS;
D O I
10.1111/pbi.12335
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In higher plants, the salt overly sensitive (SOS) signalling pathway plays a crucial role in maintaining ion homoeostasis and conferring salt tolerance under salinity condition. Previously, we functionally characterized the conserved SOS pathway in the woody plant Populus trichocarpa. In this study, we demonstrate that overexpression of the constitutively active form of PtSOS2 (PtSOS2TD), one of the key components of this pathway, significantly increased salt tolerance in aspen hybrid clone Shanxin Yang (Populus davidiana x Populus bolleana). Compared to the wild-type control, transgenic plants constitutively expressing PtSOS2TD exhibited more vigorous growth and produced greater biomass in the presence of high concentrations of NaCl. The improved salt tolerance was associated with a decreased Na+ accumulation in the leaves of transgenic plants. Further analyses revealed that plasma membrane Na+/H+ exchange activity and Na+ efflux in transgenic plants were significantly higher than those in the wild-type plants. Moreover, transgenic plants showed improved capacity in scavenging reactive oxygen species (ROS) generated by salt stress. Taken together, our results suggest that PtSOS2 could serve as an ideal target gene to genetically engineer salt-tolerant trees.
引用
收藏
页码:962 / 973
页数:12
相关论文
共 50 条
  • [1] Overexpression of PtSOS2 Enhances Salt Tolerance in Transgenic Poplars
    Zhou, Jie
    Wang, Jingjing
    Bi, Yufang
    Wang, Like
    Tang, Luozhong
    Yu, Xiang
    Ohtani, Misato
    Demura, Taku
    Qiang Zhuge
    PLANT MOLECULAR BIOLOGY REPORTER, 2014, 32 (01) : 185 - 197
  • [2] Overexpression of PtSOS2 Enhances Salt Tolerance in Transgenic Poplars
    Jie Zhou
    Jingjing Wang
    Yufang Bi
    Like Wang
    Luozhong Tang
    Xiang Yu
    Misato Ohtani
    Taku Demura
    Qiang Zhuge
    Plant Molecular Biology Reporter, 2014, 32 : 185 - 197
  • [3] Overexpression of the Arginine Decarboxylase Gene Improves Tolerance to Salt Stress in Lotus tenuis Plants
    Espasandin, Fabiana D.
    Calzadilla, Pablo I.
    Maiale, Santiago J.
    Ruiz, Oscar A.
    Sansberro, Pedro A.
    JOURNAL OF PLANT GROWTH REGULATION, 2018, 37 (01) : 156 - 165
  • [4] Overexpression of the Arginine Decarboxylase Gene Improves Tolerance to Salt Stress in Lotus tenuis Plants
    Fabiana D. Espasandin
    Pablo I. Calzadilla
    Santiago J. Maiale
    Oscar A. Ruiz
    Pedro A. Sansberro
    Journal of Plant Growth Regulation, 2018, 37 : 156 - 165
  • [5] Overexpression of the wheat expansin gene TaEXPA2 improves oxidative stress tolerance in transgenic Arabidopsis plants
    Chen, Yanhui
    Ren, Yuanqing
    Zhang, Guangqiang
    An, Jie
    Yang, Junjiao
    Wang, Yong
    Wang, Wei
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2018, 124 : 190 - 198
  • [6] Overexpression of tomato SlTpx improves salt stress tolerance in transgenic tobacco plants by scavenging H2O2
    Shengtai Qiao
    Yang Feng
    Jinping Yan
    Kunzhi Li
    Huini Xu
    Plant Cell, Tissue and Organ Culture (PCTOC), 2022, 151 : 321 - 333
  • [7] Overexpression of tomato SlTpx improves salt stress tolerance in transgenic tobacco plants by scavenging H2O2
    Qiao, Shengtai
    Feng, Yang
    Yan, Jinping
    Li, Kunzhi
    Xu, Huini
    PLANT CELL TISSUE AND ORGAN CULTURE, 2022, 151 (02) : 321 - 333
  • [8] Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance
    Sunkar, R
    Bartels, D
    Kirch, HH
    PLANT JOURNAL, 2003, 35 (04): : 452 - 464
  • [9] Expression of a calcineurin gene improves salt stress tolerance in transgenic rice
    Ma, XJ
    Qian, Q
    Zhu, DH
    PLANT MOLECULAR BIOLOGY, 2005, 58 (04) : 483 - 495
  • [10] Expression of a calcineurin gene improves salt stress tolerance in transgenic rice
    Xujun Ma
    Qian Qian
    Dahai Zhu
    Plant Molecular Biology, 2005, 58 : 483 - 495