Quadratic variation and drift parameter estimation for the stochastic wave equation with space-time white noise

被引:0
|
作者
Assaad, Obayda [1 ]
Gamain, Julie [1 ]
Tudor, Ciprian A. [1 ]
机构
[1] Univ Lille, Lab Paul Painleve, CNRS, UMR 8524, F-59000 Lille, France
关键词
Stochastic wave equation; quadratic variation; Stein-Malliavin calculus; Wiener chaos; central limit theorem; drift parameter estimation; STATISTICAL-INFERENCE; HEAT-EQUATIONS;
D O I
10.1142/S0219493722400147
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the quadratic variations (in time and in space) of the solution to the stochastic wave equation driven by the space-time white noise. We give their limit (almost. surely and in L-2(Omega)) and we prove that these variations satisfy, after a proper renormalization, a Central Limit Theorem. We apply the quadratic variation to define and analyze estimators for the drift parameter of the wave equation.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Unique Ergodicity for a Class of Stochastic Hyperbolic Equations with Additive Space-Time White Noise
    Leonardo Tolomeo
    Communications in Mathematical Physics, 2020, 377 : 1311 - 1347
  • [42] Stochastic wave equation with L?vy white noise
    Balan, Raluca
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2023, 20 : 463 - 496
  • [43] Large Deviation Principle for a Space-Time Fractional Stochastic Heat Equation with Fractional Noise
    Litan Yan
    Xiuwei Yin
    Fractional Calculus and Applied Analysis, 2018, 21 : 462 - 485
  • [44] LARGE DEVIATION PRINCIPLE FOR A SPACE-TIME FRACTIONAL STOCHASTIC HEAT EQUATION WITH FRACTIONAL NOISE
    Yan, Litan
    Yin, Xiuwei
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (02) : 462 - 485
  • [45] Two-Dimensional Gross-Pitaevskii Equation With Space-Time White Noise
    de Bouard, Anne
    Debussche, Arnaud
    Fukuizumi, Reika
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (12) : 10556 - 10614
  • [46] Surface quasi-geostrophic equation perturbed by derivatives of space-time white noise
    Hofmanova, Martina
    Luo, Xiaoyutao
    Zhu, Rongchan
    Zhu, Xiangchan
    MATHEMATISCHE ANNALEN, 2024, 390 (04) : 5111 - 5152
  • [47] Difference methods for stochastic space fractional diffusion equation driven by additive space-time white noise via Wong-Zakai approximation
    Singh, Abhishek Kumar
    Mehra, Mani
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2023, 61 (01) : 47 - 74
  • [48] CRANK-NICOLSON FINITE ELEMENT APPROXIMATIONS FOR A LINEAR STOCHASTIC FOURTH ORDER EQUATION WITH ADDITIVE SPACE-TIME WHITE NOISE
    Zouraris, Georgios E.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (02) : 838 - 858
  • [49] Boundary behavior and interior Holder regularity of the solution to nonlinear stochastic partial differential equation driven by space-time white noise
    Han, Beom-Seok
    Kim, Kyeong-Hun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (11) : 9904 - 9935
  • [50] Space-time fractional Zener wave equation
    Atanackovic, T. M.
    Janev, M.
    Oparnica, Lj.
    Pilipovic, S.
    Zorica, D.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 471 (2174):