Quadratic variation and drift parameter estimation for the stochastic wave equation with space-time white noise

被引:0
|
作者
Assaad, Obayda [1 ]
Gamain, Julie [1 ]
Tudor, Ciprian A. [1 ]
机构
[1] Univ Lille, Lab Paul Painleve, CNRS, UMR 8524, F-59000 Lille, France
关键词
Stochastic wave equation; quadratic variation; Stein-Malliavin calculus; Wiener chaos; central limit theorem; drift parameter estimation; STATISTICAL-INFERENCE; HEAT-EQUATIONS;
D O I
10.1142/S0219493722400147
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the quadratic variations (in time and in space) of the solution to the stochastic wave equation driven by the space-time white noise. We give their limit (almost. surely and in L-2(Omega)) and we prove that these variations satisfy, after a proper renormalization, a Central Limit Theorem. We apply the quadratic variation to define and analyze estimators for the drift parameter of the wave equation.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Exact variation and drift parameter estimation for the nonlinear fractional stochastic heat equation
    Gamain, Julie
    Tudor, Ciprian A. A.
    JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2023, 6 (01) : 381 - 406
  • [22] Higher Order Approximation for Stochastic Space Fractional Wave Equation Forced by an Additive Space-Time Gaussian Noise
    Xing Liu
    Weihua Deng
    Journal of Scientific Computing, 2021, 87
  • [23] Higher Order Approximation for Stochastic Space Fractional Wave Equation Forced by an Additive Space-Time Gaussian Noise
    Liu, Xing
    Deng, Weihua
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (01)
  • [24] WELL POSEDNESS FOR THE STOCHASTIC CAHN-HILLIARD EQUATION DRIVEN BY LEVY SPACE-TIME WHITE NOISE
    Guo, Boling
    Wang, Guolian
    Wang, Shu
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2009, 22 (5-6) : 543 - 560
  • [25] Stochastic heat equation with white-noise drift
    Alòs, E
    Nualart, D
    Viens, F
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2000, 36 (02): : 181 - 218
  • [26] Paracontrolled quasi-geostrophic equation with space-time white noise
    Inahama, Yuzuru
    Sawano, Yoshihiro
    DISSERTATIONES MATHEMATICAE, 2020, 558 : 5 - +
  • [27] Improved estimates for the sharp interface limit of the stochastic Cahn-Hilliard equation with space-time white noise
    Banas, L'ubomir
    Mukam, Jean Daniel
    INTERFACES AND FREE BOUNDARIES, 2024, 26 (04) : 563 - 586
  • [28] Correlation structure, quadratic variations and parameter estimation for the solution to the wave equation with fractional noise
    Khalil, Marwa
    Tudor, Ciprian A.
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02): : 3639 - 3672
  • [29] Drift parameter estimation in stochastic differential equation with multiplicative stochastic volatility
    Khlifa, Meriem Bel Hadj
    Mishura, Yuliya
    Ralchenko, Kostiantyn
    Zili, Mounir
    MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2016, 3 (04): : 269 - 285
  • [30] Stochastic partial differential equations driven by Levy space-time white noise
    Lokka, A
    Oksendal, B
    Proske, F
    ANNALS OF APPLIED PROBABILITY, 2004, 14 (03): : 1506 - 1528