Fuzzy real valued I-convergent double sequences in fuzzy normed spaces

被引:17
作者
Hazarika, Bipan [1 ]
Kumar, Vijay [2 ]
机构
[1] Rajiv Gandhi Univ, Dept Math, Doimukh 791112, Arunachal Prade, India
[2] Haryana Coll Technol & Management, Dept Math, Kaithal, Haryana, India
关键词
Ideal; I-convergence; I-cauchy; fuzzy normed space; I-limit point; I-cluster point; IDEAL CONVERGENCE; STATISTICAL CONVERGENCE; LIMIT POINTS;
D O I
10.3233/IFS-130905
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this article we introduce the notion of I-convergent and I-Cauchy double sequences in a fuzzy normed linear space and establish some basic results related to these notions. Further, we define I-limit points and I-cluster points of a double sequence in a fuzzy normed linear space and investigate the relations between these concepts.
引用
收藏
页码:2323 / 2332
页数:10
相关论文
共 57 条
[1]   Compactness in fuzzy minimal spaces [J].
Alimohammady, A ;
Roohi, M .
CHAOS SOLITONS & FRACTALS, 2006, 28 (04) :906-912
[2]   Fuzzy approximation by fuzzy convolution type operators [J].
Anastassiou, GA .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (09) :1369-1386
[3]  
[Anonymous], 1991, Acta Comment. Univ. Tartueneis
[4]   Statistical limit inferior and limit superior for sequences of fuzzy numbers [J].
Aytar, S ;
Mammadov, MA ;
Pehlivan, S .
FUZZY SETS AND SYSTEMS, 2006, 157 (07) :976-985
[5]   Statistical limit points of sequences of fuzzy numbers [J].
Aytar, S .
INFORMATION SCIENCES, 2004, 165 (1-2) :129-138
[6]   Statistical cluster and extreme limit points of sequences of fuzzy numbers [J].
Aytar, Salih ;
Pehlivan, Serpil .
INFORMATION SCIENCES, 2007, 177 (16) :3290-3296
[7]   Fuzzy bounded linear operators [J].
Bag, T ;
Samanta, SK .
FUZZY SETS AND SYSTEMS, 2005, 151 (03) :513-547
[8]  
Cheng S. C., 1994, B CALCUTTA MATH SOC, V86, P429
[9]   Fuzzy topology generated by fuzzy norm [J].
Das, NR ;
Das, P .
FUZZY SETS AND SYSTEMS, 1999, 107 (03) :349-354
[10]  
Dems K., 2005, Real Anal. Exchange, V30, P123