Characteristics of tar formation during cellulose, hemicellulose and lignin gasification

被引:178
|
作者
Yu, Haimiao [1 ]
Zhang, Ze [1 ]
Li, Zeshen [1 ]
Chen, Dezhen [1 ]
机构
[1] Tongji Univ, Inst Thermal & Environm Engn, Shanghai 200092, Peoples R China
关键词
Gasification tar; Cellulose; Lignin; Xylan; GC-MS; HIGH-TEMPERATURE; THERMOCHEMICAL CONVERSION; BIOMASS; PYROLYSIS; MECHANISM; BEHAVIOR; MODEL; WOOD;
D O I
10.1016/j.fuel.2013.10.080
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study compares the major biomass components (i.e., cellulose, hemicellulose and lignin) with respect to their differing tar formation characteristics during the gasification process. To better understand the tar formation mechanism, the tar content and composition were analysed via gas chromatography coupled with mass spectrometry (GC-MS). The tar yields of the three components all decreased with increasing temperature or excess air ratio (ER). However, lignin has a higher tar yield and produces more stable components in tar due to its molecular structure. At higher temperatures, the tar composition shifts toward higher-molecular-weight substances, such as polycyclic aromatic hydrocarbons (PAHs). For lignin, PAHs are derived primarily from phenols and its derivatives. For cellulose and hemicellulose, PAHs are derived primarily from benzene, toluene, ethylbenzene and xylene isomers (BTEX) and miscellaneous hydrocarbons. During the gasification process of real biomass materials, it is crucial to remove the tar compounds derived from lignin for tar control. Crown Copyright (C) 2013 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:250 / 256
页数:7
相关论文
共 50 条
  • [1] Catalytic gasification characteristics of cellulose, hemicellulose and lignin
    Yu, Haimiao
    Wu, Zilu
    Chen, Geng
    RENEWABLE ENERGY, 2018, 121 : 559 - 567
  • [2] Characteristics of hemicellulose, cellulose and lignin pyrolysis
    Yang, Haiping
    Yan, Rong
    Chen, Hanping
    Lee, Dong Ho
    Zheng, Chuguang
    FUEL, 2007, 86 (12-13) : 1781 - 1788
  • [3] Comparative studies on the pyrolysis of cellulose, hemicellulose, and lignin based on combined kinetics
    Yeo, Jun Yi
    Chin, Bridgid Lai Fui
    Tan, Jun Kit
    Loh, Ying Sheng
    JOURNAL OF THE ENERGY INSTITUTE, 2019, 92 (01) : 27 - 37
  • [4] Elucidation of interaction among cellulose, lignin and xylan during tar and gas evolution in steam gasification
    Fushimi, Chihiro
    Katayama, Shingo
    Tsutsumi, Atsushi
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2009, 86 (01) : 82 - 89
  • [5] Pyrolysis gasification reactivities of primary tar and char fractions from cellulose and lignin as studied with a closed ampoule reactor
    Hosoya, Takashi
    Kawamoto, Haruo
    Saka, Shiro
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2008, 83 (01) : 71 - 77
  • [6] Pyrolytic characteristics of hemicellulose, cellulose and lignin under CO2 atmosphere
    Dong, Zhiguo
    Liu, Zihao
    Zhang, Xiong
    Yang, Haiping
    Li, Jian
    Xia, Sunwen
    Chen, Yingquan
    Chen, Hanping
    FUEL, 2019, 256
  • [7] Cellulose-hemicellulose and cellulose-lignin interactions in wood pyrolysis at gasification temperature
    Hosoya, T.
    Kawamoto, H.
    Saka, S.
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2007, 80 (01) : 118 - 125
  • [8] Characterization of Switchgrass, Cellulose, Hemicellulose and Lignin for Thermochemical Conversions
    Pasangulapati, Vamsee
    Kumar, Ajay
    Jones, Carol L.
    Huhnke, Raymond L.
    JOURNAL OF BIOBASED MATERIALS AND BIOENERGY, 2012, 6 (03) : 249 - 258
  • [9] Determination of Hemicellulose, Cellulose, and Lignin Content in Different Types of Biomasses by Thermogravimetric Analysis and Pseudocomponent Kinetic Model (TGA-PKM Method)
    Diez, David
    Uruena, Ana
    Pinero, Raul
    Barrio, Aitor
    Tamminen, Tarja
    PROCESSES, 2020, 8 (09)
  • [10] Formation and emission characteristics of intermediate volatile organic compounds (IVOCs) from the combustion of biomass and their cellulose, hemicellulose, and lignin
    Zhu, Xiaomeng
    Han, Yong
    Feng, Yanli
    Cheng, Penghao
    Peng, Yu
    Wang, Junhan
    Cai, Junjie
    Chen, Yingjun
    ATMOSPHERIC ENVIRONMENT, 2022, 286