CONVOLUTION SUMS ARISING FROM DIVISOR FUNCTIONS

被引:9
作者
Kim, Aeran [1 ,2 ]
Kim, Daeyeoul [3 ]
Yan, Li [4 ]
机构
[1] Chonbuk Natl Univ, Dept Math, Chonju 561756, South Korea
[2] Chonbuk Natl Univ, Inst Pure & Appl Math, Chonju 561756, South Korea
[3] Natl Inst Math Sci, Taejon 305811, South Korea
[4] China Agr Univ, Dept Appl Math, Beijing 100083, Peoples R China
关键词
Weierstrass (sic)(x) functions; convolution sums;
D O I
10.4134/JKMS.2013.50.2.331
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let sigma(s)(N) denote the sum of the sth powers of the positive divisors of a positive integer N and let sigma(s)(N) = Sigma(d vertical bar N)(-1)(d-1)d(s) with d, N, and s positive integers. Hahn [12] proved that 16 Sigma(k < N) (sigma) over tilde (k) (sigma) over tilde (3) (N - K) = -(sigma) over tilde (5) + 2(N -1) (sigma) over tilde (3) (N) + (sigma) over tilde (1) (N). In this paper, we give a generalization of Hahn's result. Furthermore, we find the formula Sigma(N-1)(k=1) (sigma) over tilde (1)(2(n-m) K)(sigma) over tilde (3) (2(n) N - 2(n) k) for m (0 <= m <= n).
引用
收藏
页码:331 / 360
页数:30
相关论文
共 20 条
[1]   The convolution sum Σm&lt;n/16 σ(m)σ(n-16m) [J].
Alaca, Ayse ;
Alaca, Saban ;
Williams, Kenneth S. .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2008, 51 (01) :3-14
[2]  
[Anonymous], 2009, J MATH ANAL APPL
[3]  
[Anonymous], 2007, MATH J OKAYAMA U
[4]  
[Anonymous], 1973, Elliptic Functions
[5]  
[Anonymous], 1885, MESS MATH
[6]  
[Anonymous], 1994, GRAD TEXTS MATH
[7]  
[Anonymous], SOME MODULAR IDENTIT
[8]  
Berndt B. C., 1989, Ramanujan's Notebooks Part II
[9]  
Cho B, 2010, PUBL MATH-DEBRECEN, V76, P495
[10]  
Diamond F., 2005, A First Course in Modular Forms