A highly sensitive nonenzymatic glucose sensor based on multi-walled carbon nanotubes decorated with nickel and copper nanoparticles

被引:144
作者
Lin, Kuo-Chiang [1 ]
Lin, Yu-Ching [1 ]
Chen, Shen-Ming [1 ]
机构
[1] Natl Taipei Univ Technol, Dept Chem Engn & Biotechnol, Electroanal & Bioelectrochem Lab, Taipei 106, Taiwan
关键词
Glucose sensor; Copper; Nickel; Nanoparticles; Carbon nanotubes; ELECTROCHEMICAL DETECTION; ELECTROCATALYTIC OXIDATION; GOLD NANOPARTICLES; ELECTRODES; ALKALINE; ALLOY; COMPOSITES; POWDER; ARRAYS; SILVER;
D O I
10.1016/j.electacta.2013.02.098
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Novel nickel and copper nanoparticles decorated multi-walled carbon nanotubes (Ni/Cu/MWCNT) have been successfully fabricated for sensitive nonenzymatic glucose detection by the sequential electrodeposition of nickel and copper nanoparticles (NPs) on an MWCNT-modified electrode. X-ray diffraction (XRD) and atomic force microscopy (AFM) analyses reveal that the Ni and Cu NPs were successfully deposited on the MWCNTs in this hybrid composite. The electrode shows good activity towards glucose oxidation with low over-potential and a current response that is 2.5-20 times greater than that obtained using Ni/GCE, Cu/GCE, Ni/Cu/GCE, Ni/MWCNT/GCE, and Cu/MWCNT/GCE. The optimised conditions based on current response are a Ni:Cu ratio of 1:1 and pH 13. Amperometry (E-app. = +0.575V) indicates a short response time of 1 s; two specific linear ranges of 2.5 x 10(-8)-8 x 10(-4) M and 2 x 10(-3)-8 x 10(-3) M, with high sensitivities of 2633 mu A mM(-1) cm(-2) and 2437 mu A mM(-1) cm(-2), respectively; and a low detection limit of 2.5 x 10(-8) M (S/N = 3). This electrode can effectively analyse glucose concentration in human serum samples, avoiding interference, and is a promising nonenzymatic glucose sensor due to its low overpotential, high sensitivity, good selectivity, good stability, fast response, and low cost. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:164 / 172
页数:9
相关论文
共 50 条
[1]  
Abu Rhayem E, 2002, J ELECTROANAL CHEM, V538, P153, DOI 10.1016/S0022-0728(02)01142-7
[2]   Electron transport and electrocatalytic properties of MWCNT/nickel nanocomposites: Hydrazine and diethylaminoethanethiol as analytical probes [J].
Adekunle, Abolanle S. ;
Ozoemena, Kenneth I. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2010, 645 (01) :41-49
[3]   A novel glucose sensor based on monodispersed Ni/Al layered double hydroxide and chitosan [J].
Ai, Hanhua ;
Huang, Xintang ;
Zhu, Zhihong ;
Liu, Jinping ;
Chi, Qingbo ;
Li, Yuanyuan ;
Li, Zikun ;
Ji, Xiaoxu .
BIOSENSORS & BIOELECTRONICS, 2008, 24 (04) :1048-1052
[4]   Electrocatalytic oxidation of sugars on silver-UPD single crystal gold electrodes in alkaline solutions [J].
Aoun, SB ;
Bang, GS ;
Koga, T ;
Nonaka, Y ;
Sotomura, T ;
Taniguchi, I .
ELECTROCHEMISTRY COMMUNICATIONS, 2003, 5 (04) :317-320
[5]   Ni-deposited multi-walled carbon nanotubes by electrodeposition [J].
Arai, S ;
Endo, M ;
Kaneko, N .
CARBON, 2004, 42 (03) :641-644
[6]   Carbon nanofiber-copper composite powder prepared by electrodeposition [J].
Arai, S ;
Endo, M .
ELECTROCHEMISTRY COMMUNICATIONS, 2003, 5 (09) :797-799
[7]   Effect of metal ad-layers on Au(111) electrodes on electrocatalytic oxidation of glucose in an alkaline solution [J].
Ben Aoun, S ;
Dursun, Z ;
Koga, T ;
Bang, GS ;
Sotomura, T ;
Taniguchi, I .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2004, 567 (02) :175-183
[8]   Ionic strength-controlled virtual area of mesoporous platinum electrode [J].
Boo, H ;
Park, S ;
Ku, BY ;
Kim, Y ;
Park, JH ;
Kim, HC ;
Chung, TD .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (14) :4524-4525
[9]   Highly-dispersed copper microparticles on the active gold substrate as an amperometric sensor for glucose [J].
Casella, IG ;
Gatta, M ;
Guascito, MR ;
Cataldi, TRI .
ANALYTICA CHIMICA ACTA, 1997, 357 (1-2) :63-71
[10]   Nonenzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocomposite [J].
Chen, Jin ;
Zhang, Wei-De ;
Ye, Jian-Shan .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (09) :1268-1271