Inferring User Interests in the Twitter Social Network

被引:68
作者
Bhattacharya, Parantapa [1 ,2 ]
Zafar, Muhammad Bilal [2 ]
Ganguly, Niloy [1 ]
Ghosh, Saptarshi [2 ]
Gummadi, Krishna P. [2 ]
机构
[1] IIT Kharagpur, Kharagpur, W Bengal, India
[2] MPI SWS, Saarbrucken, Germany
来源
PROCEEDINGS OF THE 8TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'14) | 2014年
关键词
Twitter; user interests; Lists; Labeled LDA;
D O I
10.1145/2645710.2645765
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel mechanism to infer topics of interest of individual users in the Twitter social network. We observe that in Twitter, a user generally follows experts on various topics of her interest in order to acquire information on those topics. We use a methodology based on social annotations (proposed earlier by us) to first deduce the topical expertise of popular Twitter users, and then transitively infer the interests of the users who follow them. This methodology is a sharp departure from the traditional techniques of inferring interests of a user from the tweets that she posts or receives. We show that the topics of interest inferred by the proposed methodology are far superior than the topics extracted by state-of-the-art techniques such as using topic models (Labeled LDA) on tweets. Based upon the proposed methodology, we build a system Who Likes What, which can infer the interests of millions of Twitter users. To our knowledge, this is the first system that can infer interests for Twitter users at such scale. Hence, this system would be particularly beneficial in developing personalized recommender services over the Twitter platform.
引用
收藏
页码:357 / 360
页数:4
相关论文
共 10 条
[1]  
[Anonymous], 2009, EMNLP
[2]  
[Anonymous], 2012, WORKSH ONL SOC NETW
[3]  
[Anonymous], 2014, AAAI ICWSM
[4]  
Chen J., 2010, ACM SIGCHI
[5]  
DiazAviles E., 2012, ACM CIKM
[6]  
Ghosh Saptarshi, 2012, ACM SIGIR
[7]  
Hong L., 2013, ACM WSDM
[8]  
Kim Y., 2011, IEEE ICDM
[9]  
Michelson M., 2010, ACM WORKSH AN NOIS U
[10]  
Wagner Claudia, 2012, IEEE SOCIALCOM