Series solutions of non-similarity boundary layer flows of nano-fluids over stretching surfaces

被引:43
作者
Farooq, U. [1 ]
Hayat, T. [2 ,3 ]
Alsaedi, A. [3 ]
Liao, S. J. [1 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, State Key Lab Ocean Engn, Shanghai 200240, Peoples R China
[2] Quaid I Azam Univ, Dept Math, Islamabad 44000, Pakistan
[3] King Abdulaziz Univ, Nonlinear Anal & Appl Math NAAM Res Grp, Fac Sci, Jeddah 21589, Saudi Arabia
基金
中国国家自然科学基金;
关键词
Non-similarity flow; Nanofluid; Convergent analytic solution; Homotopy analysis method (HAM); HOMOTOPY ANALYSIS METHOD; SHEET;
D O I
10.1007/s11075-014-9934-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the convergent series solutions for the non-similarity flow of viscous fluid with nanoparticles are given. Fundamental equations employed in the mathematical modelling include the novel aspects of Brownian motion and thermophoresis. Non-similarity flow is induced by a stretching sheet with arbitrary velocity. The so-called homotopy analysis method (HAM) is applied to gain the convergent series solutions of the nonlinear partial differential equation. It is noticed that flow field, temperature and nanoparticle volume fraction profile are greatly influenced by the physical parameters such as Prandtl number, Brownian motion parameter, thermophoresis parameter and Lewis number. To the best of our knowledge, the present analysis seems to be a first attempt to non-similarity boundary layer flows of viscous fluids with nanoparticles.
引用
收藏
页码:43 / 59
页数:17
相关论文
共 34 条
[1]   Effects of heat generation/absorption on stagnation point flow of nanofluid over a surface with convective boundary conditions [J].
Alsaedi, A. ;
Awais, M. ;
Hayat, T. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (11) :4210-4223
[2]  
[Anonymous], 2012, INT J THERMAL ENV EN, DOI DOI 10.5383/IJTEE.04.01.003
[3]  
[Anonymous], 2003, Beyond Perturbation: Introduction to Homotopy Analysis Method, DOI 10.1201/9780203491164
[4]  
[Anonymous], 2010, Communications in Nonlinear Science and Numerical Simulation, DOI DOI 10.1016/J.CNSNS.2009.09.002
[5]   Nanofluid flow and heat transfer due to a stretching cylinder in the presence of magnetic field [J].
Ashorynejad, H. R. ;
Sheikholeslami, M. ;
Pop, I. ;
Ganji, D. D. .
HEAT AND MASS TRANSFER, 2013, 49 (03) :427-436
[6]   FLOW PAST A STRETCHING PLATE [J].
CRANE, LJ .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1970, 21 (04) :645-&
[7]   Optimal homotopy analysis method for nonlinear differential equations in the boundary layer [J].
Fan, Tao ;
You, Xiangcheng .
NUMERICAL ALGORITHMS, 2013, 62 (02) :337-354
[8]   Nonlinear Heat Transfer in a Two-Layer Flow With Nanofluids by OHAM [J].
Farooq, Umer ;
Lin Zhi-Liang .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2014, 136 (02)
[9]   The comparison between Homotopy Analysis Method and Optimal Homotopy Asymptotic Method for nonlinear age-structured population models [J].
Ghoreishi, M. ;
Ismail, A. I. B. Md ;
Alomari, A. K. ;
Bataineh, A. Sami .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (03) :1163-1177
[10]   Radiative flow of Jeffery fluid in a porous medium with power law heat flux and heat source [J].
Hayat, T. ;
Shehzad, S. A. ;
Qasim, M. ;
Obaidat, S. .
NUCLEAR ENGINEERING AND DESIGN, 2012, 243 :15-19