Variational integrator for fractional Euler-Lagrange equations

被引:27
作者
Bourdin, Loic [1 ]
Cresson, Jacky [1 ]
Greff, Isabelle [1 ]
Inizan, Pierre [2 ]
机构
[1] Univ Pau & Pays Adour, UMR CNRS 5142, Pau LMAP, Lab Math & Leurs Applicat, F-64010 Pau, France
[2] Observ Paris, Inst Mecan Celeste & Calcul Ephemerides, F-75014 Paris, France
关键词
Euler-Lagrange equations; Fractional calculus; Variational integrator; Noether's theorem; NOETHERS THEOREM; FORMULATION; MECHANICS; SCHEME;
D O I
10.1016/j.apnum.2013.03.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the notion of variational integrator for classical Euler-Lagrange equations to the fractional ones. As in the classical case, we prove that the variational integrator allows to preserve Noether-type results at the discrete level. (C )2013 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:14 / 23
页数:10
相关论文
共 26 条
[1]   A formulation and numerical scheme for fractional optimal control problems [J].
Agrawal, Om P. .
JOURNAL OF VIBRATION AND CONTROL, 2008, 14 (9-10) :1291-1299
[2]   A general finite element formulation for fractional variational problems [J].
Agrawal, Om P. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (01) :1-12
[3]   A general formulation and solution scheme for fractional optimal control problems [J].
Agrawal, OP .
NONLINEAR DYNAMICS, 2004, 38 (1-4) :323-337
[4]   Formulation of Euler-Lagrange equations for fractional variational problems [J].
Agrawal, OP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) :368-379
[5]   A fractional calculus of variations for multiple integrals with application to vibrating string [J].
Almeida, Ricardo ;
Malinowska, Agnieszka B. ;
Torres, Delfim F. M. .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (03)
[6]  
[Anonymous], 2000, Applications of Fractional Calculus in Physics
[7]  
[Anonymous], 2006, THEORY APPL FRACTION
[8]   FRACTIONAL ORDER STATE-EQUATIONS FOR THE CONTROL OF VISCOELASTICALLY DAMPED STRUCTURES [J].
BAGLEY, RL ;
CALICO, RA .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1991, 14 (02) :304-311
[9]   Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives [J].
Baleanu, D ;
Muslih, SI .
PHYSICA SCRIPTA, 2005, 72 (2-3) :119-121
[10]   A continuous/discrete fractional Noether's theorem [J].
Bourdin, Loic ;
Cresson, Jacky ;
Greff, Isabelle .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (04) :878-887