Sharp threshold of blow-up and scattering for the fractional Hartree equation

被引:36
作者
Guo, Qing [1 ]
Zhu, Shihui [2 ,3 ]
机构
[1] Minzu Univ China, Coll Sci, Beijing 100081, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
[3] Sichuan Normal Univ, Dept Math, Chengdu 610066, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional Schrodinger equation; L-2-supercritical; Scattering; Blow-up; GLOBAL WELL-POSEDNESS; NONLINEAR SCHRODINGER-EQUATION; COMPUTING GROUND-STATES; NUMERICAL-METHODS; DYNAMICS; COMPACTNESS; MINIMIZERS; EXISTENCE;
D O I
10.1016/j.jde.2017.11.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the fractional Hartree equation in the L-2-supercritical case, and find a sharp threshold of the scattering versus blow-up dichotomy for radial data: If M[u(0)](s-sc/sc) E[u(0)] < M[Q](s-sc/sc) E[Q] and M[u(0)](s-sc/sc) parallel to u(0)parallel to(2)(<(H)over dot>s) < M[Q](s-sc/sc) parallel to Q parallel to(2)(<(H)over dot>s), then the solution u(t) is globally well-posed and scatters; if M[u(0)](s-sc/sc) E[u(0)] < M[Q](s-sc/sc) E[Q] and M[u(0)](s-sc/sc) parallel to u(0)parallel to(2)(<(H)over dot>s) > M[Q](s-sc/sc)parallel to Q parallel to(2)(<(H)over dot>s), the solution u(t) blows up in finite time. This condition is sharp in the sense that the solitary wave solution e(it) Q(x) is global but not scattering, which satisfies the equality in the above conditions. Here, Qis the ground-state solution for the fractional Hartree equation. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:2802 / 2832
页数:31
相关论文
共 40 条