Sharp threshold of blow-up and scattering for the fractional Hartree equation

被引:36
作者
Guo, Qing [1 ]
Zhu, Shihui [2 ,3 ]
机构
[1] Minzu Univ China, Coll Sci, Beijing 100081, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
[3] Sichuan Normal Univ, Dept Math, Chengdu 610066, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional Schrodinger equation; L-2-supercritical; Scattering; Blow-up; GLOBAL WELL-POSEDNESS; NONLINEAR SCHRODINGER-EQUATION; COMPUTING GROUND-STATES; NUMERICAL-METHODS; DYNAMICS; COMPACTNESS; MINIMIZERS; EXISTENCE;
D O I
10.1016/j.jde.2017.11.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the fractional Hartree equation in the L-2-supercritical case, and find a sharp threshold of the scattering versus blow-up dichotomy for radial data: If M[u(0)](s-sc/sc) E[u(0)] < M[Q](s-sc/sc) E[Q] and M[u(0)](s-sc/sc) parallel to u(0)parallel to(2)(<(H)over dot>s) < M[Q](s-sc/sc) parallel to Q parallel to(2)(<(H)over dot>s), then the solution u(t) is globally well-posed and scatters; if M[u(0)](s-sc/sc) E[u(0)] < M[Q](s-sc/sc) E[Q] and M[u(0)](s-sc/sc) parallel to u(0)parallel to(2)(<(H)over dot>s) > M[Q](s-sc/sc)parallel to Q parallel to(2)(<(H)over dot>s), the solution u(t) blows up in finite time. This condition is sharp in the sense that the solitary wave solution e(it) Q(x) is global but not scattering, which satisfies the equality in the above conditions. Here, Qis the ground-state solution for the fractional Hartree equation. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:2802 / 2832
页数:31
相关论文
共 40 条
  • [1] Numerical methods for computing ground states and dynamics of nonlinear relativistic Hartree equation for boson stars
    Bao, Weizhu
    Dong, Xuanchun
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (13) : 5449 - 5468
  • [2] Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates
    Bao, Weizhu
    Cai, Yongyong
    Wang, Hanquan
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (20) : 7874 - 7892
  • [3] Blowup for fractional NLS
    Boulenger, Thomas
    Himmelsbach, Dominik
    Lenzmann, Enno
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (09) : 2569 - 2603
  • [4] An extension problem related to the fractional Laplacian
    Caffarelli, Luis
    Silvestre, Luis
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) : 1245 - 1260
  • [5] Cazenave T., 2003, Courant Lecture Notes in Mathematics, V10, DOI DOI 10.1090/CLN/010
  • [6] A direct method of moving planes for the fractional Laplacian
    Chen, Wenxiong
    Li, Congming
    Li, Yan
    [J]. ADVANCES IN MATHEMATICS, 2017, 308 : 404 - 437
  • [7] Cho Y., 2012, FUNKC EKVACIOJ-SER I, V56, P193
  • [8] On finite time blow-up for the mass-critical Hartree equations
    Cho, Yonggeun
    Hwang, Gyeongha
    Kwon, Soonsik
    Lee, Sanghyuk
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2015, 145 (03) : 467 - 479
  • [9] ON THE ORBITAL STABILITY OF FRACTIONAL SCHRODINGER EQUATIONS
    Cho, Yonggeun
    Hajaiej, Hichem
    Hwang, Gyeongha
    Ozawa, Tohru
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (03) : 1267 - 1282
  • [10] Mean field dynamics of boson stars
    Elgart, Alexander
    Schlein, Benjamin
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (04) : 500 - 545