Invariant ideals of abelian group algebras under the multiplicative action of a field. II

被引:5
作者
Osterburg, JM [1 ]
Passman, DS
Zalesskii, AE
机构
[1] Univ Cincinnati, Dept Math, Cincinnati, OH 45221 USA
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[3] Univ E Anglia, Sch Math, Norwich NR4 7TJ, Norfolk, England
关键词
D O I
10.1090/S0002-9939-01-06338-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let D be a division ring and let V=D-n be a finite-dimensional right D-vector space, viewed multiplicatively. If G=D-circle is the multiplicative group of D, then G acts on V and hence on any group algebra K[V]. In this paper, we completely describe the semiprime G-stable ideals of K[V], and conclude that these ideals satisfy the ascending chain condition. As it turns out, this result follows fairly easily from the corresponding results for the field of rational numbers (due to Brookes and Evans) and for infinite locally-finite fields (handled in Part I).
引用
收藏
页码:951 / 957
页数:7
相关论文
共 4 条
[1]   Augmentation modules for affine groups [J].
Brookes, CJB ;
Evans, DM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2001, 130 :287-294
[2]   SIMPLE AUGMENTATION MODULES [J].
FARKAS, DR ;
SNIDER, RL .
QUARTERLY JOURNAL OF MATHEMATICS, 1994, 45 (177) :29-42
[3]  
Passman D. S., 1977, Pure and Applied Mathematics
[4]  
PASSMAN DS, IN PRESS P AMS